<|lI!

z/0S Communications Server

IP Programmer’s Reference

Jersion 1 Release 4

SC31-8787-02

<|lI!

z/0S Communications Server

IP Programmer’s Reference

Jersion 1 Release 4

SC31-8787-02

Note:
Before using this information and the product it supports, be sure to read the general information under ['Notices” on]
-page 40

Third Edition (September 2002)

This edition applies to Version 1 Release 4 of z/OS (5694-A01) and Version 1 Release 4 of z/OS.e (5655-G52) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation

Software Reengineering

Department G7IA/ Bldg 503

Research Triangle Park, NC 27709-9990

U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-254-0206

Internet e-mail:
usib2hpd @vnet.ibm.com

World Wide Web:
[ttp://www.ibm.com/servers/eserver/zseries/zos/webgs.html

IBMLink:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw @ us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1989, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www-1.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures .
Tables .

About this document

Who should use this document.

Typographic conventions used in this document

Where to find more information
Where to find related information on the Internet
Licensed documents
Using LookAt to look up message explanatlons
How to contact IBM service .
z/OS Communications Server mformatron .

Summary of changes .

Chapter 1. General programming information .

Overview of Distributed Protocol Interface (DPI) versions 1 1 and 2 O .

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 .

SNMP agents and subagents .

Processing DPI requests.
Processing a GET request .
Processing a SET request .
Processing a GET-NEXT request
Processing a REGISTER request
Processing a TRAP request
SNMP agent DPI header files .

Compiling and linking .

Sample compile cataloged procedure addltlons
Sample link-edit cataloged procedure additions

SNMP DPI library routines .
mKkDPIlist() .
fDPlparse().
mkDPlregister() .
mkDPIresponse()
mkDPIset() .
mkDPltrap() .
mkDPltrape()
pDPIpacket().
query_DPI_port() .

Sample SNMP DPI client program for C sockets for version 1 1
Using the DPISAMPL program . . .
DPISAMPN NCCFLST for the SNMP manager .
Compiling and linking the DPISAMPL.C source code .
dpiSample table MIB descriptions . .o
The DPISAMPL.C source code .

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0
SNMP agents and subagents

DPI agent requests . . .
SNMP DPI version 2.0 library

SNMP DPI version 2.0 API

© Copyright IBM Corp. 1989, 2002

. Xiii

. XV

. XVii
. Xvii

. Xvii

. Xvii

. Xviii
. Xviii
. XiX

. XX
. XX

. XXiX

©CoOoONNOCOODOOODOOUUO OB DMOWW

Compiling and linking .
From a UNIX System Servrces envrronment .
From an MVS environment

DPI version 1.x base code conS|derat|ons

SNMP DPI API version 1.1 considerations .
Migrating your SNMP DPI subagent to version 2 0

Subagent programming concepts . L
Related information .

Specifying the SNMP DPI API
Connect processing .

OPEN request .

REGISTER request .

GET processing

SET processing .
GETNEXT processing . .
GETBULK processing request .
TRAP request
ARE_YOU_THERE request .
UNREGISTER request .

CLOSE request

Multithreading programming conS|derat|ons

Functions, data structures, and constants .

Basic DPI API functions
The DPIldebug() function .

The DPI_PACKET_LEN() macro
The fDPIparse() function

The fDPIset() function .
The mkDPIAreYouThere() function.
The mkDPIclose() function

The mkDPlopen() function.

The mkDPlregister() function.

The mkDPIresponse() function .
The mkDPlset() function

The mkDPltrap() function .

The mkDPlunregister() function .
The pDPIpacket() function.

Transport-related DPI API functions .
The DPlawait_packet_from_agent() function .
The DPIlconnect_to_agent_TCP() function .

The DPIconnect_to_agent_UNIXstream() function .

The DPIdisconnect_from_agent() function .
The DPIget_fd_for_handle() function .
The DPlsend_packet_to_agent() function .
The lookup_host() function .o
DPI structures . .
The snmp_dpi_close packet structure
The snmp_dpi_get_packet structure .
The snmp_dpi_hdr structure . .
The snmp_dpi_next_packet structure.
The snmp_dpi_resp_packet structure.
The snmp_dpi_set_packet structure .
The snmp_dpi_ureg_packet structure
The snmp_dpi_u64 structure .
Character set selection .
Related information .
Constants, values, return codes and mclude flle

iV z/0S V1R4.0 CS: IP Programmer's Reference

. 38
. 38
. 38
. 39
. 39
. 39
.41
. 42
. 42
. 42
. 43
. 44
. 45
. 45
. 47
. 48
. 48
. 48
. 48
. 49
. 49
. 51
. 52
. 53
. 54
. 55
. 56
. 57
. 58
. 59
. 61
. 63
. 65
. 67
. 69
. 70
.71
.72
. 74
. 76
. 78
.79
. 80
. 82
. 83
. 84
. 85
. 86
. 88
. 89
. 90
. 92
. 93
. 94
. 94
. 94

DPI CLOSE reason codes.
Related information .
DPI packet types .
Related information .
DPI RESPONSE error codes.
Related information
DPI UNREGISTER reason codes .
Related information .
DPI SNMP value types .
Related information .
Value representation .
Related information .
Value ranges and limits . .
Return codes from DPI transport- related funct|ons .
Related information .
The snmp_dpi.h include file .
Parameters . .
Description .
Related information .
A DPI subagent example.
Overview of subagent processing
Connecting to the agent .
Registering a subtree with the agent
Processing requests from the agent.
Processing a GET request .
Processing a GETNEXT request . .
Processing a SET/COMMIT/UNDO request
Processing an UNREGISTER request .
Processing a CLOSE request .
Generating a TRAP.

Chapter 4. Running the sample SNMP DPI client program for version 2.0
Using the sample program . Co.
Compiling and linking the dpi_mvs sample C source code

DPISimple-MIB descriptions.

Chapter 5. Resource Reservation Setup Protocol API (RAPI) .
Introduction.
API outline . . .
Compiling and linking RAPI appllcatlons .
Running RAPI applications . .
Event upcall
rapi_event_rtn_t - Event upcaII
Client library services . . .
rapi_release - Remove a session.
rapi_reserve - Make, modify, or delete a reservatlon
rapi_sender - Specify sender parameters.
rapi_session - Create a session .
rapi_version - RAPI version.
RAPI formatting routines . .
rapi_fmt_adspec - Format an adspec .
rapi_fmt_filtspec - Format a filtspec .
rapi_fmt_flowspec - Format a flowspec
rapi_fmt_tspec - Format a tspec .
RAPI objects .
Flowspecs .

Contents

. 95
. 95
. 95
. 95
. 95
. 96
. 96
. 96
. 96
. 97
. 97
. 98
. 98
. 98
. 99
. 99
. 99
. 99
.. 99
. 100
. 100
. 102
. 105
. 106
. 109
.12
. 116
. 119
. 119
. 119

123

. 123
. 123
. 124

. 125
. 125
. 126
. 126
. 126
. 127
. 127
. 129
. 130
. 130
. 131
. 133
. 134
. 134
. 134
. 135
. 135
. 136
. 137
. 137

\'

Sender tspecs.

Adspecs .

Filter specs and sender templates
Asynchronous event handling .

rapi_dispatch - Dispatch API event .

rapi_getfd - Get file descriptor .
Error handling . .o

Introduction.

RAPI error codes

RSVP error codes .
Header files

Integer and floating pornt types

The <rapi.h> header

Integrated services data structures and macros

Chapter 6. X Window System interface in the z/0S CS environment .

X Window System and OSF/Motif
DLL support for the X Window System
How the X Window System interface works in the MVS enwronment
Programming considerations .
Running an X Window System or OSF/Motlf DLL enabled applrcat|on .
X Window System environment variableso Co
EBCDIC/ASCII translation in the X Window System .
Standard clients supplied with MVS z/OS UNIX X Window System support
Demonstration programs supphed with MVS z/OS UNIX X Window System

support .

Where files are Iocated

Chapter 7. Remote procedure calls in the z/0S CS environment.
The RPC interface .
Portmapper. .
Contacting portmapper
Target assistance .
RPCGEN Command
enum clnt_.stat structure .
Porting
Remapping f|le names W|th MANIFESTH
Accessing system return messages .
Printing system return messages .
Enumerations .
Header files for remote procedure calls
Compiling and linking RPC applications
Sample compile cataloged procedure addltlons
Nonreentrant modules.
Reentrant modules .
RPC global variables .
rpc_createerr .
svc_fds .
svc_fdset .
Remote procedure and external data representatron calls.
auth_destroy().
authnone_create() .
authunix_create()
authunix_create_default()
callrpc() . .
cInt_broadcast() .

Vi 2/0S V1R4.0 CS: IP Programmer's Reference

. 138
. 138
. 138
. 138
. 140
. 140
.14
141
141
. 142
. 143
. 143
. 143
. 150

. 159
. 159
. 160
. 160
. 161
. 162
. 162
. 163

164

. 164
. 165

. 167
. 167
. 169
. 170
. 170
171
. 173
. 173
. 173
. 174
. 174
. 174
. 174
. 174
. 174
. 175
. 175
. 175
. 176
177
. 178
. 179
. 180
. 181
. 182
. 183
. 184
. 186

clnt_call()
cInt_control() .
clnt_create()
clnt_destroy() .
cint_freeres() .
cint_geterr() .
cint_pcreateerror() .
clnt_perrno()
clnt_perror()
clnt_spcreateerror() .
clnt_sperrno() .
cInt_sperror() .
clntraw_create() .
clnttcp_create()
clntudp_create() .
get_myaddress() .
getrpcport().
pmap_getmaps() .
pmap_getport()
pmap_rmtcall()
pmap_set() .
pmap_unset() .
registerrpc()
svc_destroy() .
svc_freeargs().
svc_getargs() .
svc_getcaller().
svc_getreq()
svc_getregset()
svc_register() .
svc_run()
svc_sendreply() .
svc_unregister() .
svcerr_auth() .
svcerr_decode() .
svcerr_noproc() .
svcerr_noprog() .
svcerr_progvers()
svcerr_systemerr() .
svcerr_weakauth() .
svcraw_create() .
svctcp_create()
svcudp_create() .

xdr_accepted_reply() .

xdr_array() .

xdr_authunix_parms() .

xdr_bool()
xdr_bytes() .
xdr_callhdr()
xdr_callmsg() .
xdr_char() .
xdr_destroy() .
xdr_double()
xdr_enum() .
xdr_float()
xdr_free()

Contents

. 188
. 189
. 191
. 192
. 193
. 194
. 195
. 196
. 197
. 198
. 199
. 200
. 201
. 202
. 204
. 206
. 207
. 208
. 209
. 210
. 212
. 213
. 214
. 215
. 216
. 217
. 218
. 219
. 220
. 221
. 222
. 223
. 224
. 225
. 226
. 227
. 228
. 229
. 230
. 231
. 232
. 233
. 234
. 235
. 236
. 237
. 238
. 239
. 240
. 241
. 242
. 243
. 244
. 245
. 247
. 248

Vii

viii

xdr_getpos()

xdr_inline() .

xdr_int() .

xdr_long()

xdr_opaque() .

xdr_opaque_auth() .

xdr_pmap() .

xdr_pmaplist() .

xdr_pointer()

xdr_reference()

xdr_rejected_reply().

xdr_replymsg()

xdr_setpos()

xdr_short() .

xdr_string() .

xdr_text_char()

xdr_u_char()

xdr_u_int() .

xdr_u_long()

xdr_u_short() .

xdr_union() .

xdr_vector()

xdr_void()

xdr_wrapstring() .

xdrmem_create().

xdrrec_create() .

xdrrec_endofrecord() .

xdrrec_eof()

xdrrec_skiprecord() .

xdrstdio_create() .

xpri_register() .

xpri_unregister() .

Sample RPC programs .
Running RPC sample programs .
RPC client .

RPC server.
RPC raw data stream

RPCGEN sample programs.
Generating your own sequential data sets
Building client and server executable modules .
Running RPCGEN sample programs

Chapter 8. Remote procedure calls in the z/0S UNIX System Services
environment . . e e e
Deviations from Sun RPC 4. 0
Source margins .
Functions . . .
Using z/OS UNIX System Servrces RPC
Support for 64-bit integers . .
UDP transport protocol CLIENT handles .
Restrictions. e

Chapter 9. Network Computing System (NCS) .

NCS and the Network Computing Architecture .

NCS components .
Remote procedure call run- trme Irbrary

z/OS V1R4.0 CS: IP Programmer’s Reference

. 249
. 250
. 251
. 252
. 253
. 254
. 255
. 256
. 257
. 258
. 259
. 260
. 261
. 262
. 263
. 264
. 265
. 266
. 267
. 268
. 269
. 271
. 272
. 273
. 274
. 275
. 276
. 277
. 278
. 279
. 280
. 281
. 282
. 282
. 282
. 283
. 285
. 287
. 287
. 287
. 288

. 289
. 289
. 289
. 289
. 290
. 290
. 291
. 291

. 293
. 293
. 293
. 293

Location broker .
Network interface defmrtron Ianguage compller
MVS implementation of NCS
NCS system IDL data sets .
NCS C header data sets and the Pascal mclude data set
NCS RPC run-time library
Portability issues. . .
NCS defines NCSDEFS H .
Required user-defined USERDEFS. H
Preprocessing, compiling, and linking .
NCS preprocessor programs .o
Compiling and linking NCS programs .
Running UUID@GEN . . .
NCS sample programs .
The NCSSMP sample program
NCS sample redefines

Compiling, linking, and running the sample BINOP program .

Setup .
Compile .
Link
Run
Compiling, I|nk|ng, and runmng the NCSSMP program
Setup . .o .
Compile .
Link
Run

Compiling, I|nk|ng, and runnlng the sample BANK program .

Setup .
Compile .
Link

Run

Appendix A. TCP/IP in the sysplex

Appendix B. Well-known port assignments .
Well-known UDP port assignments .

Appendix C. Programming interfaces for providing classification data to

be used in differentiated services policies
Passing application classification data on SENDMSG .
Additional considerations.

Appendix D. X Window System interface V11R4 and OSF/Motif version

1.1, . .
What is provrded
Software requirements

How the X Window System mterface works in the MVS envrronment

Identifying the target display
Application resource file .
Creating an application
X Window System header flles
Compiling and linking .
Nonreentrant modules.
Reentrant modules .
Using sample X Window System programs
Running a sample program . .

. 294
. 294
. 294
. 295
. 296
. 296
. 296
. 296
. 297
. 298
. 298
. 302
. 304
. 304
. 305
. 305
. 305
. 306
. 307
. 308
. 310
. 310
. 311
. 312
. 313
. 314
. 315
. 316
. 317
. 318
. 320

. 321

. 323
. 324

. 327
. 328
. 331

. 333
. 333
. 334
. 334
. 336
. 336
. 337
. 337
. 339
. 339
. 342
. 344
. 344

ix

Standard X client applications.34

Building X client modules346
X Window System routines.348
Opening and closing a display. 348
Creating and destroying windows. 348
Manipulating windows .349
Changing window attributes.349
Obtaining window information 349
Obtaining properties andatoms 350
Manipulating window properties 350
Setting window selections350
Manipulating colormaps .350
Manipulating colorcells .35
Creating and freeing pixmaps 351
Manipulating graphics contexts 351
Clearing and copyingareas.352
Drawing lines .32
Filling areas . . . e e e e353
Loading and freeing fonts G 1
Querying character stringsizes 354
Drawingtext .34
Transferringimages .35
Manipulating cursors . . . e35
Handling window manager func'uons R 1515
Manipulating keyboard settings 356
Controlling the screen saver . . . e e e356
Manipulating hosts and access control e e e356
Handling events N Y4
Enabling and disabling synchromzatlon N [Y 4
Using default error handling.357
Communicating with window managers 358
Manipulating keyboard event functions. 359
Manipulating regions .360
Using cut and paste buffers.360
Querying visualtypes .80
Manipulating images . 361
Manipulating bitmaps. 361
Using the resource manager 361
Manipulating display functions.362
Extension routines .3064
MIT extensionsto X .365
Associate table functions. .366
Miscellaneous utility routines 366
X authorization routines .369
X Window System toolkit .370
Xt Intrinsics routines .37
Application resources .37
Athena widget support. . . . I =10
OSF/Motif-based widget support e e e e383
z/OS UNIX System Services support384
What is provided with z/OS UNIX System Serwces385
z/OS UNIX System Services software requirements. 385
z/OS UNIX System Services application resource file 385
Identifying the target display in zZOS UNIX System Services. 386
Compiling and linking with z/OS UNIX System Services 386
Compiling and linking with z/OS UNIX System Services using 089 388

X z/OS V1R4.0 CS: IP Programmer’s Reference

Standard X client applications for z/OS UNIX System Services.

Application resources for z/0OS UNIX System Services .
Appendix E. Related protocol specifications (RFCs)
Appendix F. Information APARs
Information APARs for IP manuals
Information APARs for SNA manuals
Other information APARs.

Appendix G. Accessibility .
Using assistive technologies
Keyboard navigation of the user interface.

Notices .
Trademarks.

Index .

Communicating Your Comments to IBM .

. 388
. 388

. 391

. 399
. 399
. 400
. 400

. 403
. 403
. 403

. 405
. 408

. 411

. 421

Contents

Xi

Xii z/0S V1R4.0 CS: IP Programmer’s Reference

Figures

1. X Window System and OSF/Motif HFS from a user perspective 165
2. Remote procedure call (client) e e168
3. Remote procedure call (server) . . . e [51e]
4. Macro to maintain IBM System/370 portab|I|ty e e e e e e s s 297
5. NCSDEFS.H and USERDEFS.H include statements297
6. MVS X Window System application to server. . . . N 1 15)
7. Resources specified for a typical X Window System appl|cat|on N V4

© Copyright IBM Corp. 1989, 2002 xiii

Xiv z/0S V1R4.0 CS: IP Programmer’s Reference

Tables

©CONOO AWM~

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.

Components of DPI version 2.0

GETSOCKOPT enhancement benefits

TCP well-known port assignments .
Well-known UDP port assignments.

Building X client modules based on X11 functlons .
Building X client modules based on Xt Intrinsics and Athena Toolklt functlons

Opening and closing display .

Creating and destroying windows .
Manipulating windows

Changing window attributes

Obtaining window information.
Properties and atoms.

Manipulating window propert|es
Setting window selections .
Manipulating colormaps .

Manipulating color cells .

Creating and freeing pixmaps.
Manipulating graphics contexts .
Clearing and copying areas

Drawing lines. -

Filling areas . .

Loading and freeing fonts .

Querying character string sizes .
Drawing text .

Transferring images .

Manipulating cursors . . .
Handling window manager functlons .
Manipulating keyboard settings .
Controlling the screen saver . .
Manipulating hosts and access control
Handling events.

Enabling and disabling synchromzatlon .

Using default error handling

Communicating with window managers .

Manipulating keyboard event functions
Manipulating regions .

Using cut and paste buffers
Querying visual types.
Manipulating images .
Manipulating bit maps

Using the resource manager .
Manipulating display functions
Extension routines .

MIT extensions to X .
Associate table functions .
Miscellaneous utility routines .
Authorization routines .
X Intrinsic header file names .
Xt Intrinsics routines .

Athena widget routines .
Athena header file names . .
OSF/Motif header file names .
IP information APARs.

© Copyright IBM Corp. 1989, 2002

. 37
. 321
. 323
. 324
. 346
. 347
. 348
. 348
. 349
. 349
. 350
. 350
. 350
. 350
. 350
. 351
. 351
. 351
. 352
. 352
. 353
. 353
. 354
. 354
. 354
. 355
. 355
. 356
. 356
. 356
. 357
. 357
. 357
. 358
. 359
. 360
. 360
. 360
. 361
. 361
. 361
. 362
. 364
. 365
. 366
. 367
. 369
. 371
. 371
. 380
. 382
. 384
. 399

XV

54, SNA information APARs. .400
55. Non-document information APARs .40

XVi 2z/0S VIR4.0 CS: IP Programmer’s Reference

About this document

This document describes the syntax and semantics of a set of high-level application
functions that you can use to program your own applications in a TCP/IP
environment. These functions provide support for application facilities, such as user
authentication, distributed databases, distributed processing, network management,
and device sharing. The information in this document supports both IPv6 and IPv4.
Unless explicitly noted, information describes IPv4 networking protocol. IPv6
support is qualified within the text.

This document supports z/OS.e.

Who should use this document

This document is intended for use by an experienced programmer familiar with
multiple virtual storage (MVS™), the IBM® MVS operating system commands, and
the TCP/IP protocols.

This document is written for programmers interested in high-level application
functions that can be used to program applications in a TCP/IP environment. These
functions involve user authentication, distributed databases, distributed processing,
network management, and device sharing.

Before using this document, you should be familiar with the MVS operating system
and the IBM Time Sharing Option (TSO).

Depending on the design and function of your application, you should be familiar
with the C programming language.

In addition, zZOS Communications Server and any required programming products
should already be installed and customized for your network.

Typographic conventions used in this document

This publication uses the following typographic conventions:

« Commands that you enter verbatim onto the command line are presented in
bold.

» Variable information and parameters that you enter within commands, such as
filenames, are presented in italic.

» System responses are presented in monospace.

Where to find more information

This section contains:

» Pointers to information available on the Internet

* Information about licensed documentation

* Information about LookAt, the online message tool

A set of tables that describes the documents in the zZOS™ Communications
Server (z/OS CS) library, along with related publications

© Copyright IBM Corp. 1989, 2002 XVii

Where to find related information on the Internet
z/0S
- |nttp://www.ibm.com/servers/eserver/zseries/zos/
z/0S Internet Library
— |http://www.ibom.com/servers/eserver/zseries/zos/bkserv/|
IBM Communications Server product
— |nttp://www.software.ibm.com/network/commserver/|
IBM Communications Server support
— |http://www.software.ibm.com/network/commserver/support/
IBM Systems Center publications
— [nttp://www.redbooks.ibm.com/
IBM Systems Center flashes
- |http://www-1.ibm.com/support/techdocs/atsmastr.nsﬂ
IBM
— |nttp://www.ibm.com|
RFCs
— |nttp://www.ietf.org/rfc.html|

Information about Web addresses can also be found in information APAR 1111334.

DNS web sites
For more information about DNS, see the following USENET news groups and
mailing:
USENET news groups:

comp.protocols.dns.bind
For BIND mailing lists, see:

* http://www.isc.org/ml-archives/

— BIND Users
- Subscribe by sending mail to bind-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

— BIND 9 Users (Note: This list may not be maintained indefinitely.)
- Subscribe by sending mail to bind9-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind9-users @isc.org.

For definitions of the terms and abbreviations used in this document, you can view
or download the latest IBM Glossary of Computing Terms at the following Web
address:

[ttp://www.ibm.com/ibm/terminology|

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Licensed documents

z/OS Communications Server licensed documentation in PDF format is available on
the Internet at the IBM Resource Link Web site at
bhttp://www.ibm.com/servers/resourcelinkl Licensed documents are available only to
customers with a zZOS Communications Server license. Access to these documents

XViii z/0S V1R4.0 CS: IP Programmer's Reference

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.ibm.com
http://www.rfc-editor.org/rfc.html
http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink

requires an IBM Resource Link Web user ID and password, and a key code. With
your z/OS Communications Server order, you received a memo that includes this
key code. To obtain your IBM Resource Link Web user ID and password, log on to
Ihttp://www.ibm.com/servers/resourcelinkl To register for access to the z/OS licensed
documents perform the following steps:

1. Log on to Resource Link using your Resource Link user ID and password.
2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code, you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

You cannot access the z/OS licensed documents unless you have registered for
access to them and received an e-mail confirmation informing you that your request
has been processed. To access the licensed documents perform the following
steps:

Log on to Resource Link using your Resource Link user ID and password.
Click on Library.

Click on zSeries.

Click on Software.

Click on Z/0S Communications Server.

Access the licensed document by selecting the appropriate element.

o oA~ 0N~

Using LookAt to look up message explanations

LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
[rttp://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/1ookat.htmi|

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VlIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your zZOS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html|
2. Click the News button.
3. Scroll to Download LookAt Code for TSO and VM.

About this document XiX

www.ibm.com/servers/resourcelink
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,
IEC192l has routing and descriptor codes listed in [z/0S MVS Routing and|
|Descriptor Codes|. For such messages, LookAt prompts you to choose which
book to open.

How to contact IBM service

z/0S Communi

For immediate assistance, visit this Web site:
Ihttp://www.software.ibm.com/network/commserver/support/|

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday — Friday, 8:00 a.m. —
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

If you would like to provide feedback on this publication, see|[‘Communicating Your
[Comments to IBM” on page 421}

cations Server information

This section contains descriptions of the documents in the zZOS Communications
Server library.

z/OS Communications Server publications are available:

* Online at the z/OS Internet Library web page at
[http://www.ibm.com/servers/eserver/zseries/zos/bkserv|

* In hardcopy and softcopy
* In softcopy only

Softcopy information
Softcopy publications are available in the following collections:

Titles

Order Description
Number

z/0OS V1R4 Collection

SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R4, in both BookManager and PDF formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex bookshelf.

XX z/OS V1R4.0 CS: IP Programmer’s Reference

http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Titles Order Description
Number
z/OS V1R4 and Software SK3T-4271 This collection includes the libraries of z/OS (the element and

Products DVD Collection

feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library | SK3T-4307

This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication

SK2T-2177

This collection contains over 300 ITSO redbooks that apply to the

IBM 5/390 Redbooks S/390 platform and to host networking arranged into subject
Collection bookshelves.
z/OS Communications Server library
The following abbreviations follow each order number in the tables below.
HC/SC — Both hardcopy and softcopy are available.
SC — Only softcopy is available. These documents are available on the CD Rom
accompanying z/OS (SK8T-4269 or SK3T-4307). Unlicensed documents can be
viewed at the z/OS Internet library site.
Updates to documents are available on RETAIN and in information APARs (info
APARs). See [Appendix F, “Information APARs” on page 399 for a list of the
documents and the info APARs associated with them.
* Info APARs for OS/390 documents are in the document called OS/390 DOC
APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_0S390/|
BOOKS/IDDOCMST/CCONTENTS]
* Info APARSs for z/OS documents are in the document called z/OS and z/OS.e
DOC APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_0S390/|
BOOKS/ZIDOCMST/CCONTENTS,
Planning and migration:
Title Number Format Description
z/OS Communications GC31-8774 HC/SC This document is intended to help you plan for
Server: SNA Migration SNA, whether you are migrating from a previous
version or installing SNA for the first time. This
document also identifies the optional and required
modifications needed to enable you to use the
enhanced functions provided with SNA.
2/0S Communicationd | GC31-8773 HC/SC This document is intended to help you plan for

Server: IP Migratior]

TCP/IP Services, whether you are migrating from
a previous version or installing IP for the first
time. This document also identifies the optional
and required modifications needed to enable you
to use the enhanced functions provided with
TCP/IP Services.

2/0S Communicationg ||SC31-8885|

Server: IPv6 NetworH

and Application Design|

Guide

HC/SC This document is a high-level introduction to IPv6.
It describes concepts of zZOS Communications
Server’s support of IPv6, coexistence with IPv4,
and migration issues.

About this document XXi

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Resource definition, configuration,

and tuning:

XXii z/0S V1R4.0 CS: IP Programmer's Reference

Title Number Format Description
2/0S Communications SC31-8775 HC/SC This document describes the major concepts
Server: IP Configuratior] involved in understanding and configuring an IP
Guidg network. Familiarity with the z/OS operating
system, IP protocols, zZOS UNIX System
Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document in conjunction
with the [Z0S Communications Server: IA
|Configuration Referencd,
2/0S Communicationg | SC31-8776 HC/SC This document presents information for people
Server: IP Configuration| who want to administer and maintain IP. Use this
Referencg] document in conjunction with the |z_/O§
|[Communications Server: IP Configuration Guide}
The information in this document includes:
» TCP/IP configuration data sets
+ Configuration statements
» Translation tables
* SMF records
* Protocol number and port assignments
2/0S Communicationg SC31-8777 HC/SC This document presents the major concepts
Server: SNA NetworK involved in implementing an SNA network. Use
Implementation Guide| this document in conjunction with the [0
Communications Server: SNA Resource Definition|
F?eferencglr
z/0S Communicationg | SC31-8778 HC/SC This document describes each SNA definition
Server: SNA Resourcel statement, start option, and macroinstruction for
Definition Reference] user tables. It also describes NCP definition
statements that affect SNA. Use this document in
conjunction with the|z/0S Communicationg
|Server: SNA Network Implementation Guidel
2/0S Communicationd | SC31-8836 SC This document contains sample definitions to help
Server: SNA Resource] you implement SNA functions in your networks,
Definition Samples| and includes sample major node definitions.
2/0S Communications | SC31-8832 SC This guide provides information to help you install,
Server: AnyNet SNA| configure, use, and diagnose SNA over TCP/IP.
over TCP/IH
2/0S Communications SC31-8831 SC This guide provides information to help you install,
Server: AnyNet Socketd configure, use, and diagnose sockets over SNA. It
over SNA also provides information to help you prepare
application programs to use sockets over SNA.
2/0S Communicationg | SC31-8833 SC This document is for system programmers and
Server: IP Network Prin{ network administrators who need to prepare their
Faci/itﬂ network to route SNA, JES2, or JESS printer
output to remote printers using TCP/IP Services.
Operation:

Title Number Format Description

2/0S Communications SC31-8780 HC/SC This document describes how to use TCP/IP

Server: IP User’s Guide| applications. It contains requests that allow a user

and Commandsd to log on to a remote host using Telnet, transfer
data sets using FTP, send and receive electronic
mail, print on remote printers, and authenticate
network users.

2/0S Communications| SC31-8781 HC/SC This document describes the functions and

Server: IP Systen] commands helpful in configuring or monitoring

Administrator’s| your system. It contains system administrator’s

Commands commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also
includes TSO and MVS commands commonly
used during the IP configuration process.

2/0S Communications | SC31-8779 HC/SC This document serves as a reference for

Server: SNA Operation| programmers and operators requiring detailed
information about specific operator commands.

2/0S Communicationd | SX75-0124 HC/SC This document contains essential information

Server: Quick Referencel about SNA and IP commands.

Customization:

Title Number Format Description

z/0S Communicationy | LY43-0092 SC This document enables you to customize SNA,

Server: SNA and includes the following:

Customizatior} « Communication network management (CNM)

routing table
* Logon-interpret routine requirements
* Logon manager installation-wide exit routine for
the CLU search exit
* TSO/SNA installation-wide exit routines
* SNA installation-wide exit routines
Writing application programs:

Title Number Format Description

z/0S Communicationg | SC31-8788 SC This document describes the syntax and

Server: IP Application] semantics of program source code necessary to

Programming Interface| write your own application programming interface

Guidg (API) into TCP/IP. You can use this interface as
the communication base for writing your own
client or server application. You can also use this
document to adapt your existing applications to
communicate with each other using sockets over
TCP/IP.

2/0S Communications| SC31-8807 SC This document is for programmers who want to

Server: IP CICS Sockets| set up, write application programs for, and

Guidg diagnose problems with the socket interface for
CICS using z/OS TCP/IP.

2/0S Communications | SC31-8830 SC This document is for programmers who want

Server: IP IMS Socketd application programs that use the IMS TCP/IP

Guidg application development services provided by
IBM’s TCP/IP Services.

About this document XXiii

Title Number Format Description

2/0S Communicationg | SC31-8787 SC This document describes the syntax and

Server: IP Programmer’s| semantics of a set of high-level application

Referencgl functions that you can use to program your own
applications in a TCP/IP environment. These
functions provide support for application facilities,
such as user authentication, distributed
databases, distributed processing, network
management, and device sharing. Familiarity with
the z/OS operating system, TCP/IP protocols, and
IBM Time Sharing Option (TSO) is recommended.

2/0S Communicationd | SC31-8829 SC This document describes how to use SNA

Server: SNA macroinstructions to send data to and receive

@é data from (1) a terminal in either the same or a
different domain, or (2) another application
program in either the same or a different domain.

2/0S Communicationg | SC31-8811 SC This document describes how to use the SNA LU

Server: SNA| 6.2 application programming interface for host

Programmer’s LU 6.2 application programs. This document applies to

Guide| programs that use only LU 6.2 sessions or that
use LU 6.2 sessions along with other session
types. (Only LU 6.2 sessions are covered in this
document.)

z/0OS Communicationg | SC31-8810 SC This document provides reference material for the

Server: SNA| SNA LU 6.2 programming interface for host

Programmer’s LU 6.2 application programs.

Referencgl

z/0OS Communications | SC31-8808 SC This document describes how applications use

Server: CSM Guide the communications storage manager.

z/0S Communicationd SC31-8828 SC This document describes the Common

Server: CMIP Services| Management Information Protocol (CMIP)

and Topology Agent] programming interface for application

Guidd programmers to use in coding CMIP application
programs. The document provides guide and
reference information about CMIP services and
the SNA topology agent.

Diagnosis:

Title Number Format Description

2/0S Communicationg | GC31-8782 HC/SC This document explains how to diagnose TCP/IP

Server: IP Diagnosis| problems and how to determine whether a
specific problem is in the TCP/IP product code. It
explains how to gather information for and
describe problems to the IBM Software Support
Center.

2/0S Communicationg LY43-0088 HC/SC These documents help you identify an SNA

Server: SNA Diagnosis| problem, classify it, and collect information about

Vol 1, Techniques and | LY43-0089 it before you call the IBM Support Center. The

Procedured and|z/0g information collected includes traces, dumps, and

Communications Server] other problem documentation.

SNA Diagnosis Vol 2]

FFST Dumps and thel|

Vi

XXiV z/0S V1R4.0 CS: IP Programmer’s Reference

Title Number Format Description
2/0S Communications LY43-0090 SC These documents describe SNA data areas and
Server: SNA Data Aread can be used to read an SNA dump. They are
Volume 1 and|z/0g LY43-0091 intended for IBM programming service
Communications Server] representatives and customer personnel who are
SNA Data Areas Volumel diagnosing problems with SNA.
Messages and codes:
Title Number Format Description
2/0S Communications SC31-8790 HC/SC This document describes the ELM, IKT, IST, ISU,
Server: SNA Messaged IUT, IVT, and USS messages. Other information
in this document includes:
* Command and RU types in SNA messages
* Node and ID types in SNA messages
* Supplemental message-related information
2/0S Communications SC31-8783 HC/SC This volume contains TCP/IP messages
Server: IP Messageq beginning with EZA.
Volume 1 (EZA)
z/0S Communications SC31-8784 HC/SC This volume contains TCP/IP messages
Server: IP Messaged beginning with EZB.
Volume 2 (EZB)
z/0S Communications | SC31-8785 HC/SC This volume contains TCP/IP messages
Server: IP Messaged beginning with EZY.
Volume 3 (EZY)|
z/0S Communications | SC31-8786 HC/SC This volume contains TCP/IP messages
Server: IP Messages beginning with EZZ and SNM.
Volume 4 (EZZ-SNM)
2/0S Communications SC31-8791 HC/SC This document describes codes and other
Server: IP and SNAl information that appear in zZOS Communications
Coded Server messages.
APPC Application Suite:
Title Number Format Description
z/0OS Communications SC31-8809 SC This documents the end-user interface (concepts,
Server: APPC commands, and messages) for the AFTP,
Application Suite User’s ANAME, and APING facilities of the APPC
Guide application suite. Although its primary audience is
the end user, administrators and application
programmers may also find it useful.
z/0S Communications SC31-8835 SC This document contains the information that
Server: APPC administrators need to configure the APPC
Application Suite application suite and to manage the APING,
Administration ANAME, AFTP, and A3270 servers.
z/OS Communications SC31-8834 SC This document provides the information
Server: APPC application programmers need to add the
Application Suite functions of the AFTP and ANAME APIs to their
Programming application programs.

About this document XXV

Redbooks

The following Redbooks may help you as you implement z/ OS Communications

Server.
Title Number
TCP/IP Tutorial and Technical Overview GG24-3376
SNA and TCP/IP Integration SG24-5291
IBM Communications Server for 0S/390 V2R10 TCP/IP Implementation Guide: SG24-5227
Volume 1: Configuration and Routing
IBM Communications Server for 0S/390 V2R10 TCP/IP Implementation Guide: SG24-5228
Volume 2: UNIX Applications
IBM Communications Server for 0S/390 V2R7 TCP/IP Implementation Guide: SG24-5229
Volume 3: MV'S Applications
Secureway Communications Server for 0S/390 V2R8 TCP/IP: Guide to SG24-5631
Enhancements
TCP/IP in a Sysplex SG24-5235
Managing OS/390 TCP/IP with SNMP SG24-5866
Security in 0S/390-based TCP/IP Networks SG24-5383
IP Network Design Guide SG24-2580
Migrating Subarea Networks to an IP Infrastructure SG24-5957

Related information

For information about z/OS products, refer to|z/OS Information Roadmap|
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of zZOS Communications Server, as well as describing each z/OS

publication.

Relevant RFCs are listed in an appendix of the IP documents.

The table below lists documents that may be helpful to readers.

Title Number
|z/0S Security Server Firewall Technologies|
|S/390: OSA-Express Customer’s Guide and Referenced SA22-7403
[z/0S JES2 Initialization and Tuning Guide
[z/0S MVS Diagnosis: Procedures|
[0S MVS Diagnosis: Referencd
[0S MVS Diagnosis: Tools and Service Aids|
[z/0S Security Server LDAP Client Programming
|2/0S Security Server LDAP Server Administration and Usd
Understanding LDAP SG24-4986
z/0S UNIX System Services Programming: Assembler Callabld [SA22-7803|
Services Referenced

[/0S UNIX System Services Command Reference|
[z/0S UNIX System Services User’s Guidg
[0S UNIX System Services Planning
|2/0S MVS Using the Subsystem Interfacq

XXVi z/0S V1R4.0 CS: IP Programmer’s Reference

Title Number
|z/0S C/C++ Run-Time Library Referenced A22-7821
|z/0S Program Directory] 110-0670

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001

ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR,
1995)

ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and
Associates, 1997

ISBN 156592-222-0

TCP/IP Tutorial and Technical Overview

GG24-3376

TCP/IP lllustrated, Volume I: The Protocols, W. Richard Stevens,
Addison-Wesley Publishing, 1994

ISBN 0-201-63346-9

TCP/IP lllustrated, Volume II: The Implementation, Gary R. Wright
and W. Richard Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP lllustrated, Volume I, W. Richard Stevens,
Addison-Wesley Publishing, 1995

ISBN 0-201-63495-3

|z/0S System Secure Sockets Layer Programming|

Determining if a publication is current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a

publication:

» At the end of a publication’s order number there is a dash followed by two digits,
often referred to as the dash level. A publication with a higher dash level is more
current than one with a lower dash level. For example, in the publication order
number GC28-1747-07, the dash level 07 means that the publication is more
current than previous levels, such as 05 or 04.

» If a hardcopy publication and a softcopy publication have the same dash level, it

is possible that the softcopy publication is more current than the hardcopy

publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the

hardcopy publication.

» To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a

publication is new or changed.

About this document

XXVii

XXViii z/0S V1R4.0 CS: IP Programmer’s Reference

Summary of changes

Summary of changes
for SC31-8787-02
z/0OS Version 1 Release 4

This document contains information previously presented in SC31-8787-01, which
supports z/OS Version 1 Release 2. The information in this document supports both
IPv6 and IPv4. Unless explicitly noted, information describes IPv4 networking
protocol. IPv6 support is qualified within the text.

New information:

+ Information about using the QoS classification data on AF_INET6 sockets (see
page

An appendix with z/OS product accessibility information has been added.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R4, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

This document supports z/OS.e.

Summary of changes
for SC31-8787-01
z/OS Version 1 Release 2

This document contains information previously presented in SC31-8787-00, which
supports z/OS Version 1 Release 1.

New information
* Network management:
— SNMP agent/subagent security

* Programming interfaces for providing classification data to be used in
differentiated services policies

Changed information
+ Definitions of localhost for SNMP for DPI®:
— The agent_hostname description
— Examples of localhost to 127.0.0.1
— Character set selection description
— Connecting to the agent description
— The -h hostname description
* Network management:

— SNMP community name used in connecting to the SNMP agent must be
specified in ASCIl. EBCDIC is no longer tolerated.

© Copyright IBM Corp. 1989, 2002 XXix

Deleted information
» Chapter on Kerberos Authentication System

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SC31-8787-00
z/OS Version 1 Release 1

This document contains information also presented in OS/390 V2R8 SecureWay
Communications Server: IP Programmer’s Reference.

XXX z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 1. General programming information

The information presented in this reference applies only to IPv4, AF_INET sockets
unless specified as IPv6.

For the fundamental technical information you need to know before you attempt to
work with the application program interfaces (APIs) provided with TCP/IP, refer to
the |[z70S Communications Server: IP Application Programming Interface Guide,

The modules generated by the new compiler are similar to those produced by the
AD/Cycle® compiler.

Overview of Distributed Protocol Interface (DPI) versions 1.1 and 2.0

Two levels of Distributed Protocol Interface (DPI) are supported by z/OS
Communications Server. The following shows some support differences between
the two versions:
» Support provided by DPI Version 1.1
— Was supported on earlier releases of TCP/IP and continues to be supported
by the SNMP agent; existing subagents written with DPI Version 1.1 still run
with no changes required.
— Supports SNMP Version 1 protocols, but not SNMP Version 2.
— lIs intended for standard C socket users, not zZOS UNIX C socket users.
— Supports connections from subagents using TCP sockets.
— Is documented in RFC 1228.
» Support provided by DPI Version 2.0:
— Is supported in TCP/IP z/OS UNIX and above.
— Contains more functions that make writing a subagent easier.
— Supports both SNMP Version 1 and Version 2 protocols.
— Is used by z/OS UNIX C socket users but not standard C socket users.

— Supports connections from subagents using TCP sockets and UNIX® Stream
sockets.

— Is documented in RFC 1592.

While DPI Version 1.1 can continue to be used by existing subagents, IBM
recommends that users who are writing new subagents or modifying old ones
consider upgrading to DPI Version 2.0 to take advantage of the SNMP Version 2
protocols and the greater functionality of DPI Version 2.0.

Although the SNMP agent shipped with z/OS CS is now enabled to support SNMP
Version 3 (SNMPv3), no changes are required to subagents written with either DPI
Version 1.1 or Version 2.0. SNMPv3 did not introduce any new protocol data unit
(PDU) types. Support for the SNMPv3 framework is handled by the SNMP agent.

Users of DPI Version 1.1 must compile using the DPI library routines provided in
hlq.SEZADPIL and the version of the header file, snmp_dpi.h, provided in
hlg.SEZACMAC. See [Chapter 2, “SNMP agent Distributed Protocol Interface]
|version 1.1” on page 3| for additional details.

Users of DPI Version 2.0 must compile using the DPI library routines provided in
the HFS directory /usr/Ipp/tcpip/snmp/build/libdpi20 and the DPI Version 2.0 copy of

© Copyright IBM Corp. 1989, 2002 1

the header file, snmp_dpi.h in /usr/lpp/tcpip/snmp/include. Additional details are in
[Chapter 3, “SNMP agent Distributed Protocol Interface version 2.0” on page 35|

For information about migrating an existing subagent from DPI Version 1.1 to DPI
Version 2.0, see [‘Migrating your SNMP DPI subagent to version 2.0” on page 39|

2 2/0S V1R4.0 CS: IP Programmer’s Reference

Chapter 2. SNMP agent Distributed Protocol Interface version
1.1

The simple network management protocol (SNMP) agent Distributed Protocol
Interface (DPI) permits you to dynamically add, delete, or replace management
variables in the local management information base (MIB) without recompiling the
SNMP agent. The DPI protocol is also supported by SNMP agents on other IBM
platforms. This makes it easier to port subagents between those platforms.

For more information about the DPI interface, refer to RFC 1228.

SNMP agents and subagents

To allow the subagents to perform their functions, the SNMP agent binds to an
arbitrarily chosen TCP port and listens for connection requests from subagents. A
well-known port is not used. Every invocation of the SNMP agent potentially results
in a different TCP port being used.

Agents, or SNMP servers, are responsible for performing the network management
functions requested by the network management stations.

A subagent provides an extension to the functionality provided by the SNMP agent.
The subagent allows you to define your own MIB variables, which are useful in your
environment, and register them with the SNMP agent. When requests for these
variables are received by the SNMP agent, the agent passes the request to the
subagent and returns a response to the agent. The SNMP agent creates an SNMP
response packet and sends the response to the remote network management
station that initiated the request. The existence of the subagent is transparent to the
network management station.

A subagent of the SNMP agent determines the port number by sending a GET
request for an MIB variable, which represents the value of the TCP port. The
subagent is not required to create and parse SNMP packets, because the DPI
application program interface (API) has a library routine query_DPI_port(). After the
subagent obtains the value of the DPI TCP port, it should make a TCP connection
to the appropriate port. After a successful socket connect() call, the subagent
registers the set of variables it supports with the SNMP agent. For information
about the connect() call refer to the [zZ0S Communications Server: IP Application
|Programming Interface Guidel When all variable classes are registered, the
subagent waits for requests from the SNMP agent.

If connections to the SNMP agent are restricted by the security product, then the
security product user ID associated with the subagent must be permitted to the
agent’s security product resource name for the connection to be accepted. Refer to
the SNMP chapter in the [zZ0S Communications Server: IP Configuration Guide| for
more information about security product access between subagents and the z/OS
Communications Server SNMP agent.

© Copyright IBM Corp. 1989, 2002 3

Processing DPI requests

The SNMP agent can initiate three DPI requests: GET, SET, and GET-NEXT. These
requests correspond to the three SNMP requests that a network management
station can make. The subagent responds to a request with a response packet. The
response packet can be created using the mkDPIresponse() library routine, which is
part of the DPI API library.

The SNMP subagent can only initiate two requests: REGISTER and TRAP. A
REGISTER request indicates to the SNMP agent which MIB variables are
supported by the subagent. A TRAP request notifies the SNMP agent of an
asynchronous event that should be sent to network management stations.

Processing a GET request

The DPI packet is parsed to get the object ID of the requested variable. If the
specified object ID of the requested variable is not supported by the subagent, the
subagent returns an error indication of SNMP_NO_SUCH_NAME. Name, type, or
value information is not returned. For example:

unsigned char *cp;

cp = mkDPIresponse(SNMP_NO_SUCH_NAME,O0);

If the object ID of the variable is supported, an error is not returned and the name,
type, and value of the object ID are returned using the mkDPIset() and
mkDPIresponse() routines. The following is an example of an object ID, whose type
is string, being returned.

char xobj_id;

unsigned char *cp;
struct dpi_set packet *ret value;
char *data;

data = "a string to be returned";

ret_value = mkDPIset(obj_id,SNMP_TYPE_STRING,
strlen(data)+1,data);

cp = mkDPIresponse(0,ret_value);

Processing a SET request

Processing a SET request is similar to processing a GET request, but the SNMP
agent passes additional information to the subagent. This additional information
consists of the type, length, and value to be set.

If the object ID of the variable is not supported, the subagent returns an error
indication of SNMP_NO_SUCH_NAME. If the object ID of the variable is supported,
but cannot be set, an error indication of SNMP_READ_ONLY is returned. If the
object ID of the variable is supported, and is successfully set, the message
SNMP_NO_ERROR is returned.

Processing a GET-NEXT request

4

Parsing a GET-NEXT request yields two parameters: the object ID of the requested
variable and the reason for this request. This allows the subagent to return the
name, type, and value of the next supported variable, whose name lexicographically
follows that of the passed object ID.

Subagents can support several different groups of the MIB tree. However, the
subagent cannot jump from one group to another. You must determine the reason

z/OS V1R4.0 CS: IP Programmer’s Reference

for the request to then determine the path to traverse in the MIB tree. The second
parameter contains this reason and is the group prefix of the MIB tree that is
supported by the subagent.

If the object ID of the next variable supported by the subagent does not match this
group prefix, the subagent must return SNMP_NO_SUCH_NAME. If required, the
SNMP agent calls on the subagent again and passes a different group prefix.

For example, if you have two subagents, the first subagent registers two group
prefixes, A and C, and supports variables A.1, A.2, and C.1. The second subagent
registers the group prefix B, and supports variable B.1.

When a remote management station begins dumping the MIB, starting from A, the
following sequence of queries is performed:

Subagent 1 gets called:
get-next(A,A

get-next(A.1
get-next(A.2

v v =
n
LI | -
—_

error(no such name)
Subagent 2 is then called:

get-next(A.2,
19

) == B.1
get-next(B.1,B) ==

error(no such name)

Subagent 1 is then called:
get-next(B.1 == C.1
get-next(C.1,C) == error(no such name)

Processing a REGISTER request

A subagent must register the variables that it supports with the SNMP agent.
Packets can be created using the mkDPlIregister() routine.

For example:
unsigned char *cp;

cp = mkDPIregister("1.3.6.1.2.1.1.2.");

Note: Object IDs are registered with a trailing period (.).

Processing a TRAP request

A subagent can request that the SNMP agent generate a TRAP. The subagent must
provide the desired values for the generic and specific parameters of the TRAP. The
subagent can optionally provide a name, type, and value parameter. The DPI API
library routine mkDPltrap() can be used to generate the TRAP packet.

SNMP agent DPI header files

The following header is required to run SNMP DPI applications:
snmp_dpi.h

Compiling and linking

You can use several methods to compile, link-edit, and execute your TCP/IP C
source program in MVS. This section contains information about the data sets that
you must include to run your C source program under MVS batch, using
IBM-supplied cataloged procedures.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 5

The following list contains partitioned data set names, which are used as examples
in the following JCL statements:

USER.MYPROG.C
Contains user C source programs

USER.MYPROG.C(PROGRAM?1)
Member PROGRAM1 in USER.MYPROG.C partitioned data set

USER.MYPROG.H
Contains user #include data sets

USER.MYPROG.OBJ
Contains object code for the compiled versions of user C programs in
USER.MYPROG.C

USER.MYPROG.LOAD
Contains link-edited versions of user programs in USER.MYPROG.OBJ

Sample compile cataloged procedure additions

Include the following in the compile step of your cataloged procedure. Cataloged
procedures are included in the IBM-supplied samples for your MVS system.

* Add the following statement as the first /SYSLIB DD statement;

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR
* Add the following /USERLIB DD statement;

//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

Sample link-edit cataloged procedure additions
Include the following in the link-edit step of your cataloged procedure.

Add the following statements after the /SYSLIB DD statement;

I DD DSN=hlq.SEZACMTX,DISP=SHR
1 DD DSN=hlq.SEZADPIL,DISP=SHR

Note: For more information about compiling and linking, refer to the|z/OS C/C+

SNMP DPI library routines

This section provides the syntax, parameters, and other appropriate information for
each DPI routine supported by TCP/IP.

mkDPllist()

#include <snmp_dpi.h>
#include <types.h>

struct dpi_set_packet *mkDPI1ist(packet, oid_name, type, len, value)
struct dpi_set_packet *packet;

char =*oid_name;

int type;

int len;

char =*value;

Parameters

6 2z/0SViR4.0CS: IP Programmer’s Reference

fDPIparse()

packet A pointer to a structure dpi_set_packet, or NULL

oid_name The object identifier of the variable
type The type of the value

len The length of the value

value A pointer to the value

Description: The mkDPllist() routine can be used to create the portion of the
parse tree that represents a list of name and value pairs. Each entry in the list
represents a name and value pair (as would normally be returned in a response
packet). If the pointer packet is NULL, a new dpi_set_packet structure is
dynamically allocated and the pointer to that structure is returned. The structure will
contain the new name and value pair. If the pointer packet is not NULL, a new
dpi_set_packet structure is dynamically allocated and chained to the list. The new
structure will contain the new name and value pair. The pointer packet will be
returned to the caller. If an error is detected, a NULL pointer is returned.

The value of type can be the same as for mkDPIset(). These are defined in the
snmp_api.h header file.

The dpi_set_packet structure has a next pointer [0 in case of a mkDPIset() call and
is also 0 upon the first mkDPIlist() call]. The structure looks like this:

struct dpi_set_packet {

char *xobject_id;
unsigned char type;
unsigned short value_Ten;
char *value;

struct dpi_set_packet =next;

#include <snmp_dpi.h>
#include <bsdtypes.h>

void fDPIparse(hdr)
struct snmp_dpi_hdr *hdr;

Parameters

hdr Specifies a parse tree.

Description: The fDPIparse() routine frees a parse tree that was previously
created by a call to pDPIpacket(). After calling fDPIparse(), you cannot make
additional references to the parse tree.

Return Values: None.

mkDPIregister()

#include <snmp_dpi.h>
#include <bsdtypes.h>

unsigned char *mkDPIregister(oid_name)
char *oid_name;

Parameters

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 7

oid_name Specifies the object identifier of the variable to be registered. Object
identifiers are registered with a trailing period (.).

Description: The mkDPlregister() routine creates a register request packet and
returns a pointer to a static buffer, which holds the packet contents. The length of
the remaining packet is stored in the first 2 bytes of the packet.

Return Values: If successful, returns a pointer to a static buffer containing the
packet contents. A NULL pointer is returned if an error is detected during the
creation of the packet.

Example: The following is an example of the mkDPIregister() call.

unsigned char *packet;
int Ten;

packet = mkDPIregister("1.3.6.1.2.1.1.1.");

Ten = xpacket * 256 + *(packet + 1);
mKkDPIresponse()

#include <snmp_dpi.h>
#include <bsdtypes.h>

unsigned char *mkDPIresponse(ret code, value list)
int ret_code;
struct dpi_set packet *value list;

Parameters
ret_code Specifies the error code to be returned.
value_list Indicates a pointer to a parse tree containing the name, type, and

value information to be returned.

Description: The mkDPIlresponse() routine creates a response packet. The first
parameter, ret_code, is the error code to be returned. Zero indicates no errors.
Possible errors include the following:

* SNMP_BAD_VALUE

+ SNMP_GEN_ERR

* SNMP_NO_ERROR

*+ SNMP_NO_SUCH_NAME
+ SNMP_READ_ONLY

* SNMP_TOO_BIG

Refer to the snmp_dpi.h header file for a description of these messages.

If ret_code does not indicate an error, the second parameter is a pointer to a parse
tree created by mkDPIset(), which represents the name, type, and value of the
information being returned. If an error is indicated, the second parameter is passed
as a NULL pointer.

The length of the remaining packet is stored in the first 2 bytes of the packet.

Note: mkDPIresponse() always frees the passed parse tree.

8 2z/0SViR40CS:IP Programmer’s Reference

mkDPlset()

Return Values: If successful, mkDPIresponse() returns a pointer to a static buffer
containing the packet contents. This is the same buffer used by mkDPlIregister(). A
NULL pointer is returned if an error is detected during the creation of the packet.

Example: The following is an example of the mkDPIresponse() call.
unsigned char *packet;

int error_code;
struct dpi_set_packet =*ret_value;

packet = mkDPIresponse(error_code, ret_value);

len = *packet * 256 + *(packet + 1);

#include <snmp_dpi.h>
#include <bsdtypes.h>

struct dpi_set_packet *mkDPIset(oid name, type, len, value)
char *oid_name;

int type;

int len;

char *value;

Parameters

oid_name Specifies the object identifier of the variable.

type Specifies the type of the object identifier.

len Indicates the length of the value.

value Indicates the pointer to the first byte of the value of the object

identifier.

Description: The mkDPIset() routine can be used to create the portion of a parse
tree that represents a name and value pair (as would normally be returned in a
response packet). It returns a pointer to a dynamically allocated parse tree
representing the name, type, and value information. If an error is detected while
creating the parse tree, a NULL pointer is returned.

The value of fype can be one of the following, which are defined in the snmp_dpi.h
header file:

*+ SNMP_TYPE_COUNTER
 SNMP_TYPE_GAUGE

* SNMP_TYPE_INTERNET
* SNMP_TYPE_NUMBER
 SNMP_TYPE_OBJECT

* SNMP_TYPE_STRING

*+ SNMP_TYPE_TICKS

The value parameter is always a pointer to the first byte of the object ID value.
Note: The parse tree is dynamically allocated, and copies are made of the passed
parameters. After a successful call to mkDPlset(), the application can

dispose of the passed parameters without affecting the contents of the parse
tree.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 9

mkDPlItrap()

mkDPltrape()

Return Values: Returns a pointer to a parse tree containing the name, type, and
value information.

#include <snmp_dpi.h>
#include <bsdtypes.h>

unsigned char *mkDPItrap(generic, specific, value list)
int generic;

int specific;

struct dpi_set_packet *value_list;

Parameters

generic Specifies the generic field in the SNMP TRAP packet.

specific Specifies the specific field in the SNMP TRAP packet.

value_list Used to pass the name and value pair to be placed into the SNMP

packet.

Description: The mkDPItrap() routine creates a TRAP request packet. The
information contained in value_list is passed as the set_packet portion of the parse
tree.

The length of the remaining packet is stored in the first 2 bytes of the packet.
Note: mkDPItrap() always frees the passed parse tree.

Return Values: If the packet can be created, a pointer to a static buffer
containing the packet contents is returned. This is the same buffer that is used by
mKkDPIregister(). If an error is encountered while creating the packet, a NULL
pointer is returned.

Example: The following is an example of the mkDPltrap() call.

struct dpi_set_packet *if_index_value;
unsigned Tong data;

unsigned char *packet;

int Ten;

if_index_value = mkDPIset("1.3.6.1.2.1.2.2.1.1", SNMP_TYPE_NUMBER,
sizeof (unsigned long), &data);

packet = mkDPItrap(2, 0, if_index_value);

len = *packet * 256 + x(packet + 1);

write(fd,packet,len);

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPItrape(generic, specific, value_list, enterprise_oid)
long int generic; /* 4 octet integer =/

long int specific;

struct dpi_set_packet *value_list;

char *enterprise_oid;
Parameters
generic The generic field for the SNMP TRAP packet.

10 2/0S V1R4.0 CS: IP Programmer’s Reference

pDPIpacket()

specific The specific field for the SNMP TRAP packet.

value_list A pointer to a structure dpi_set_packet, which contains one or more
variables to be sent with the SNMP TRAP packet. Or NULL if no
variables are to be sent.

enterprise_oid A pointer to a character string representing the enterprise object ID
(in ASN.1 notation, e.g. 1.3.6.1.4.1.2.2.1.4). Or NULL if you want
the SNMP agent to use its own enterprise object ID.

Description: The mkDPltrape() routine can be used to create an extended trap.
It is basically the same as the mkDPltrap() routine, but allows you to pass a list of
variables, and also an enterprise object ID.

#include <snmp_dpi.h>
#include <bsdtypes.h>

struct snmp_dpi_hdr *pDPIpacket(packet)
unsigned char *packet;

Parameters

packet Specifies the DPI packet to be parsed.

Description: The pDPlpacket() routine parses a DPI packet and returns a parse
tree representing its contents. The parse tree is dynamically allocated and contains
copies of the information within the DPI packet. After a successful call to
pDPIpacket(), the packet can be disposed of in any manner the application
chooses, without affecting the contents of the parse tree.

Return Values: If pDPIpacket() is successful, a parse tree is returned. If an error
is encountered during the parse, a NULL pointer is returned.

Note: The parse tree structures are defined in the snmp_dpi.h header file.
Example: The following is an example of the mkDPIpacket() call.

The root of the parse tree is represented by an snmp_dpi_hdr structure.

struct snmp_dpi_hdr {
unsigned char proto major;
unsigned char proto_minor;
unsigned char proto_release;

unsigned char packet_type;

union {
struct dpi_get_packet *dpi_get;
struct dpi_next_packet *dpi_next;
struct dpi_set_packet *dpi_set;

struct dpi_resp_packet *dpi_response;
struct dpi_trap_packet *dpi_trap;
} packet_body;
bs

The packet_type field can have one of the following values, which are defined in the
snmp_dpi.h header file:
« SNMP_DPI_GET

* SNMP_DPI_GET_NEXT

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 11

* SNMP_DPI_SET

The packet_type field indicates the request that is made of the DPI client. For each
of these requests, the remainder of the packet_body is different. If a GET request is
indicated, the object ID of the desired variable is passed in a dpi_get_packet
structure.

struct dpi_get_packet {
char xobject_id;
1

A GET-NEXT request is similar, but the dpi_next_packet structure also contains the
object ID prefix of the group that is currently being traversed.
struct dpi_next_packet {

char xobject_id;

char *group_id;

}s

If the next object, whose object ID lexicographically follows the object ID indicated
by object_id, does not begin with the suffix indicated by the group_id, the DPI client
must return an error indication of SNMP_NO_SUCH_NAME.

A SET request has the most data associated with it, and this is contained in a
dpi_set_packet structure.

struct dpi_set packet {

char *xobject_id;
unsigned char type;
unsigned short value_Ten;
char *value;

} struct dpi_set_packet *next;

The object ID of the variable to be modified is indicated by object_id. The type of
the variable is provided in type and can have one of the following values:
« SNMP_TYPE_COUNTER

* SNMP_TYPE_EMPTY

« SNMP_TYPE_GAUGE

« SNMP_TYPE_INTERNET

 SNMP_TYPE_NUMBER

« SNMP_TYPE_OBJECT

+ SNMP_TYPE_STRING

+ SNMP_TYPE_TICKS

The length of the value to be set is stored in value_len and value contains a pointer
to the value.

Note: The storage pointed to by value is reclaimed when the parse tree is freed.
The DPI client must make provision for copying the value contents.

query_DPI_port()

#include <snmp_dpi.h>
#include <bsdtypes.h>

int query DPI_port (host_name, community name)

char xhost_name;
char *community _name;

12 2/0S V1R4.0 CS: IP Programmer’s Reference

Parameters

host_name Specifies a pointer to the SNMP agent host name or internet
address.

community_name
Specifies a pointer to the community name to be used when
making a request. The community_name constant must be
specified in ASCII.

Description: The query_DPI_port() routine is used by a DPI client to determine
the TCP port number that is associated with the DPI. This port number is needed to
connect() to the SNMP agent. The port number is obtained through an SNMP GET
request.

Return Values: An integer representing the TCP port number is returned if
successful; a —1 is returned if the port cannot be determined.

Sample SNMP DPI client program for C sockets for version 1.1

This section contains an example of an SNMP DPI client program. The DPISAMPL
program can be run using the SNMP agents that support the SNMP-DPI interface
as described in RFC 1228.

It can be used to test agent DPI implementations because it provides variables of
all types and allows you to generate traps of all types.

DPISAMPL implements a set of variables in the dpiSample table, which consists of
a set of objects in the IBM Research tree (1.3.6.1.2.2.1.4). See [‘dpiSample table]
[MIB descriptions” on page 15|for the objectID and type of each object.

Using the DPISAMPL program
The DPISAMPL program accepts the following arguments:

? Explains the usage.

-d n Sets the debug at level n. The range is from 0 (for no messages) to
4 (for the most verbose). The default is 0. If a number greater than
4 is specified, tracing is set to level 4.

-trap gtype stype data
Generates a trap of the generic type gtype, of the specific type
stype, and pass data as an additional value for the variable
dpiSample.stype.0. The values for gtype are from 0 through 5. The
values for stype indicate how data is interpreted. The following
values are valid for stype:

number

octet string
object ID

empty (ignored)
internet address
counter

gauge

0 N O aa H» O N =

time ticks

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 13

9 display string
10 octet string

-std_traps Generates or simulates the standard SNMP traps, which are the
generic types 0 through 5. This includes a link down trap.

-ent_traps Generates extended enterprise-specific traps, which are specific
types 1 through 9, using the internal dpiSample variables.

ent_trapse Generates extended enterprise-specific traps, which are specific
types 11 through 19.

-all_traps Generates std_traps, ent_traps, and ent_trapse.
-iucv Uses an AF_IUCV socket to connect to the SNMP agent. This is
the default.

Note: Although the IUCV API is no longer supported, use of the
IUCV interaddress space communication mechanism is
supported.

-u agent_userid
Specifies the user ID where the SNMP agent is running. The default
is SNMPD.

-inet Uses an AF_INET socket to connect to the SNMP agent.

agent_hostname
Specifies the host name of the system where an SNMP
DPI-capable agent is running. The default is localhost.

Note: The localhost value is not defined by default on z/OS.
Ensure localhost is defined to the name server or in the host
name resolution file as the local IP address if the
agent_hostname parameter is not explicitly specified.

community_name
Specifies the community name, which is required to get the dpiPort.
The default is public.

DPISAMPN NCCFLST for the SNMP manager

14

The DPISAMPN NCCFLST allows you to exercise the DPISAMPL subagent from a
Tivoli® NetView® SNMP management station. The DPISAMPL subagent must be
running. This sample allows you to specify which test function you want to run.

You can specify the following on Tivoli NetView:

agent_host name
Specifies the host name or IP address of the system where the SNMP
agent is running.

community_name
Specifies the community name. The CLIST makes the community name
uppercases so the SNMP agent must be configured to accept the
community name in uppercase.

function
Specifies the test function to be performed. Valid test functions are:

ALL Runs all of the tests. This is the default.

GET Retrieves the dpiSample variables one at a time.

z/OS V1R4.0 CS: IP Programmer’s Reference

GETNEXT
Retrieves all the dpiSample variables.

ONEGET
Retrieves all the dpiSample variables with one GET.

ONESET
Sets all the dpiSample variables at once.

QUIT Causes the DPISAMPLE subagent to terminate.
SET Sets the dpiSample variables one at a time with one SET.

TRAPS
Instructs the DPISAMPLE subagent to generate nine
enterprise-specific traps.

The NCCFLST assumes that the definitions for the dpiSample table (see
|“dpiSampIe table MIB desc:riptions”b have been added to the hig. MIBDESC.DATA
file. You can also GET, GETNEXT, or SET dpiSample variables with regular SNMP
GET/GETNEXT/SET commands.

The DPISAMPL subagent recognizes a few special values in the variable
dpiSampleCommand. The following are the special values and their associated
subagent actions.

all_traps
Generates std_traps, ent_traps, and ent_trapse.

ent_traps
Generates extended enterprise-specific traps, which are specific types 1
through 9, using the internal dpiSample variables.

ent_trapse
Generates extended enterprise-specific traps, which are specific types 11
through 19.

quit Causes the subagent to terminate.

std_traps
Generates or simulates the standard SNMP traps, which are the generic
types 0 through 5. This includes a link down trap.

Compiling and linking the DPISAMPL.C source code
The source code for the sample DPI program can be found in the hlq.SEZAINST

data set, member DPISAMPL.
You can specify the following compile time flags:

_NO_PROTO
The DPISAMPL.C code assumes that it is compiled with an ANSI-C
compliant compiler. It can be compiled without ANSI-C by defining this flag.

MVS Indicates that compilation is for MVS®, and uses MVS-specific includes.
Some MVS/VM-specific code is compiled.

When linking the DPISAMPL code, you must use the hlq.SEZADPIL data set. It
contains the SNMP-DPI interface routines as described in RFC 1228.

dpiSample table MIB descriptions
The following shows the MIB descriptions for the dpiSample table.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 15

DPISAMPLE.C supports these variables as an SNMP DPI sample sub-agent
it also generates enterprise specific traps via DPI with these objects

dpiSample 1.3.6.1.4.1.2.2.1.4. table 0
dpiSampTeNumber 1.3.6.1.4.1.2.2.1.4.1. number 10
next one is to be able to send a badValue with a SET request
dpiSampTeNumberString 1.3.6.1.4.1.2.2.1.4.1.1. string 10
dpiSampleOctetString 1.3.6.1.4.1.2.2.1.4.2. string 10
dpiSampleObjectID 1.3.6.1.4.1.2.2.1.4.3. object 10
XGMON/SQESERV does not allow to specify empty (so use empty string)
dpiSampleEmpty 1.3.6.1.4.1.2.2.1.4.4, string 10
dpiSamplelnetAddress 1.3.6.1.4.1.2.2.1.4.5. internet 10
dpiSampleCounter 1.3.6.1.4.1.2.2.1.4.6. counter 10
dpiSampleGauge 1.3.6.1.4.1.2.2.1.4.7. gauge 10
dpiSampleTimeTicks 1.3.6.1.4.1.2.2.1.4.8. ticks 10
dpiSampleDisplayString 1.3.6.1.4.1.2.2.1.4.9. display 10
dpiSampleCommand 1.3.6.1.4.1.2.2.1.4.10. display 1
Notes:

1. dpiSample object is not accessible.

2. dpiSampleNumber object is only accessible for the SNMP GET command.

3. dpiSampleNumberString object is only accessible for the SNMP GET command.
4. dpiSampleEmpty object is not accessible for the SNMP SET command.

The DPISAMPL.C source code
The following is the source code for the DPISAMPL.C program.

Note: The characters shown below might vary due to differences in character sets.
This code is included as an example only.

/***/

/* TCP/IP for MVS */
/* SMP/E Distribution Name: EZAEC02Z */
/* File name: tcpip.SEZAINST(DPISAMPL) */
/* */
/* */
/* SNMP-DPI - SNMP Distributed Programming Interface */
/* */
/* May 1991 - Version 1.0 - SNMP-DPI Version 1.0 (RFC1228) x/
/* Created by IBM Research. */
/* Feb 1992 - Version 1.1 - Allow enterpriseID to be passed with =/
/* a (enterprise specific) trap */
/* - allow multiple variables to be passed */
/* - Use 4 octets (INTEGER from RFC1157) x/
/* for generic and specific type. */
/* Jun 1992 - Make it run on 0S/2 as well */
/* */
/* Copyright None */
/* */
/* dpisampl.c - a sample SNMP-DPI subagent */
/* - can be used to test agent DPI implementations. */
/* */
/* $P1= MV11816 TCPV3R2 960524 jab: zero siucv fields for connect =/
/* */
/***/
/* For testing with XGMON and/or SQESERV (SNMP Query Engine) */
/* it is best to keep the following define for OID in sync */
/* with the dpiSample objectID in the MIB description file */
/* (mib_desc for XGMON, MIBDESC DATA for SQESERV on VM and x/
/* MIBDESC.DATA for SQESERV on MVS). */
/***/
#define 0ID "1.3.6.1.4.1.2.2.1.4."

#define ENTERPRISE_OID "1.3.6.1.4.1.2.2.1.4" /+ dpiSample */
#define ifIndex "1.3.6.1.2.1.2.2.1.1.0"

#define egpNeighAddr "1.3.6.1.2.8.5.1.2.0"

16 2/0S V1R4.0 CS: IP Programmer’s Reference

#define PUBLIC_COMMUNITY_ NAME "public"
#if defined(VM) || defined(MVS)

#define SNMPAGENTUSERID "SNMPD"
#define SNMPIUCVNAME "SNMP_DPI"
#pragma csect(CODE, "$DPISAMP")

#pragma csect(STATIC,"#DPISAMP")

#include <manifest.h> /* VM specific things */
#include "snmpnms.h" /* short external names for VM/MVS =*/
#include "snmp@vm.h" /* more of those short names =*/

#include <saiucv.h>

#include <bsdtime.h>

#include <bsdtypes.h>

#include <socket.h>

#include <in.h>

#include <netdb.h>

#include <inet.h>

#define asciitoebcdic asciitoe

#define ebcdictoascii ebcdicto)

extern char ebcdictoY , asciitoeY ;

#pragma linkage(cmxlate,0S)

#define DO_ETOA(a) cmxlate((a),ebcdictoascii,strien((a)))
#define DO_ATOE(a) cmxlate((a),asciitoebcdic,strlen((a)))
#define DO_ERROR(a) tcperror((a))

#define LOOPBACK "loopback"

#define IUCV TRUE

#define max(a,b) (((a) > (b)) ? (a) : (b))

#define min(a,b) (((a) < (b)) ? (a) : (b))

#else /x we are not on VM or MVS x/

#ifdef 0S2

#include <stdlib.h>

#include <types.h>

#include <doscalls.h>

#ifndef sleep

#define sleep(a) DOSSLEEP(1000 * (a))

#endif

#define close soclose

#endif

#include <sys/time.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

// #include <arpa/inet.h>

#define DO_ETOA(a) ; /* no need for this =/
#define DO_ATOE(a) ; /* no need for this =/
#define DO_ERROR(a) perror((a))

#define LOOPBACK "localhost"

#define IUCV FALSE

#ifdef AIX221

#define isdigit(c) (((c) >= '0') && ((c) <= '9"))
#else

// #include <sys/select.h>

#endif /x AIX221 */

#endif /+ defined(VM) || defined(MVS) =/

#include <stdio.h>

#include "snmp@dpi.h"

#define WAIT_FOR_AGENT 3 /* time to wait before closing agent fd =/
#ifndef TRUE

#define TRUE 1

#define FALSE 0

#endif

#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments();

static void send packet();

static void print_val();

static void usage();

static void init_connection();

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

17

static void init_variables();

static void await_and_read_packet();

static void handle_packet();

static void do_get();

static void do_set();

static void issue_traps();

static void issue_one_trap();

static void issue_one_trape();

static void issue_std_traps();

static void issue _ent traps();

static void issue_ent_trapse();

static void do_register();

static void dump_bfr();

static struct dpi_set_packet *addtoset();

extern unsigned long Tookup_host();

#else /+ _NO_PROTO =*/ /* for ANSI-C compiler */

static void check_arguments(const int argc, char xargvy);

static void send_packet(const char * packet);

static void print_val(const int index);

static void usage(const char *progname, const int exit_rc);

static void init_connection(void);

static void init_variables(void);

static void await_and_read_packet(void);

static void handle_packet(void);

static void do_get(void);

static void do_set(void);

static void issue_traps(void);

static void issue_one_trap(void);

static void issue_one_trape(void);

static void issue_std_traps(void);

static void issue _ent traps(void);

static void issue_ent_trapse(void);

static void do_register(void);

static void dump_bfr(const char *buf, const int Ten);

static struct dpi_set_packet *addtoset(struct dpi_set_packet =*data,
int stype);

extern unsigned long Tookup_host(const char *hostname);

#endif /* _NO_PROTO */

#define OSTRING "hex01-04:"

#define DSTRING "Initial Display String"
#define COMMAND "None"

#define BUFSIZE 4096

#define TIMEOUT 3

#define PACKET_LEN(packet) (((unsigned char)=*(packet)) * 256 + \
((unsigned char)*((packet) + 1)) + 2)
/* We have the following instances for 0ID.x variables =/
/* 0 - table */

static Tong number = 0; /* 1 - a number */
static unsigned char *ostring = 0; /* 2 - octet string */
static int ostring _len = 0; /* and its length =/
static unsigned char *objectID = 0; /* 3 - objectID */
static int objectID_len= 0; /* and its length =/
/* 4 - some empty variable */
static unsigned Tong ipaddr = 0; /* 5 - ipaddress */
static unsigned long counter 1; /* 6 - a counter */
static unsigned Tong gauge 1; /* 7 - a gauge */
static unsigned long ticks 1; /* 8 - time ticks */
static unsigned char *dstring = 0; /* 9 - display string */
static unsigned char *command = 0; /* 10 - command */

static char *DPI_varY = {
"dpiSample",
"dpiSampTeNumber",
"dpiSampleOctetString",
"dpiSampleObjectID",
"dpiSampleEmpty",
"dpiSamplelInetAddress",
"dpiSampTeCounter",

18 2/0S V1R4.0 CS: IP Programmer’s Reference

"dpiSampleGauge",
"dpiSampleTimeTicks",
"dpiSampleDisplayString",

"dpiSampTeCommand"

1

static short int valid_typesY = { /x SN
-1, [* 0
SNMP_TYPE_NUMBER, /* 1
SNMP_TYPE_STRING, /* 2
SNMP_TYPE_OBJECT, /* 3
-1, /% SNMP_TYPE_EMPTY */ /* 4
SNMP_TYPE_INTERNET, /* 5
SNMP_TYPE_COUNTER, /* 6
SNMP_TYPE_GAUGE, /7
SNMP_TYPE_TICKS, /* 8
SNMP_TYPE_STRING, /%9
SNMP_TYPE_STRING /* 10

#define OID_COUNT_FOR_TRAPS 9

#define OID_COUNT 10

}s

static char xpacket = NULL; /=

static char inbufYBUFSIZE ; /=

static int dpi_fd; /*

static short int dpi_port; /*

static unsigned long dpi_ipaddress; /*

static char *dpi_hostname; /*

static char *dpi_userid; /*

static char *var_gid; /%

static char *var_oid; /*

static int var_index; /*

static unsigned char var_type; /*

static char *var_value; /*

static short int var_value_len; /=

static int debug_1vl = 0; /*

static int use_iucv = IUCV; /=

static int do_quit = FALSE;/*

static int trap_gtype = 0; /*

static int trap_stype = 0; /*

static char *trap_data = NULL;/=*

static int do_trap = 0; /%

#define ONE_TRAP 1

#define ONE_TRAPE 2

#define STD_TRAPS 3

#define ENT_TRAPS 4

#define ENT_TRAPSE 5

#define ALL_TRAPS 6

#define MAX_TRAPE_DATA 10 /*

static long trape_gtype = 6; /*

static Tong trape_stype = 11; /*

static char =*trape_eprise = NULL; /*

static char wtrape_dataYMAX_TRAPE_DATA

static int trape_datacnt; /*

#ifdef _NO_PROTO /*

main(argc, argv) /*

int argc;

char *argvy ;

#else /x _NO_PROTO */ . /*

main(const int argc, char xargvy) /*

#endif /+* _NO_PROTO =/
{
check_arguments(argc, argv);
dpi_ipaddress =
init_connection();
init_variables();
if (do_trap) {
issue_traps();
sTeep (WAIT_FOR_AGENT);

/*

/*
/*
/*
/*
/*

MP_TYPEs accepted on SET =*/
do not check type */
number */
octet string */
object identifier */
do not check type */
internet address */
counter */
gauge */
time ticks */
display string */
command (display string) */

ptr to send packet. */

buffer for receive packets */
fd for socket to DPI agent */
DPI port at agent =*/

IP address of DPI agent x/
hostname of DPI agent */
userid of DPI agent VM/MVS x/
groupID received */

objectID received =/

0ID variable index */

SET value type */

SET value */

SET value length x/

current debug Tevel =/
optional use of AF_IUCV */
Quit in await Toop */

trap generic type */

trap specific type */

trap data */
switch for traps

*/

data for extended trap */

trap generic type */

trap specific type */
enterprise id */

; /* pointers to data values */
actual number of values */

for classic K&R C */

main line */

for ANSI-C compiler */
main line =/

check callers arguments =*/

Tookup_host(dpi_hostname); /* get ip address */

connect to specified agent */
initialize our variables */
we just need to do traps */
issue the trap(s) */

sleep a bit, so agent can */

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

19

close(dpi_fd); /* read data before we close =/

exit(0); /* and that's it */
} /* end if (do_trap) */
do_register(); /* register our objectIDs =/
printf("%s ready and awaiting queries from agent\n",argvV0);
while (do_quit == FALSE) { /* forever until quit or error */
await_and_read_packet(); /* wait for next packet */
handle_packet(); /* handle it %/
if (do_trap) issue_traps(); /* request to issue traps */
} /* while loop */
sleep(WAIT_FOR_AGENT); /* allow agent to read response =*/
printf("Quitting, %s set to: quit\n",DPI_varV10);
exit(2); /* sampleDisplayString == quit x/
1
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_traps()
#else /* _NO_PROTO =/ /* for ANSI-C compiler =/

static void issue_traps(void)
#endif /+ _NO_PROTO =/

{
switch (do_trap) { /* let's see which one(s) */
case ONE_TRAP: /* only need to issue one trap */
issue_one_trap(); /* go issue the one trap */
break;
case ONE_TRAPE: /* only need to issue one trape x/
issue_one_trape(); /* go issue the one trape */
break;
case STD_TRAPS: /* only need to issue std traps x/
issue_std_traps(); /* standard traps gtypes 0-5 */
break;
case ENT_TRAPS: /* only need to issue ent traps */
issue_ent_traps(); /* enterprise specific traps */
break;
case ENT_TRAPSE: /* only need to issue ent trapse */
issue_ent_trapse(); /* enterprise specific trapse */
break;
case ALL_TRAPS: /* only need to issue std traps x/
issue_std_traps(); /* standard traps gtypes 0-5 */
issue_ent_traps(); /* enterprise specific traps */
issue_ent_trapse(); /* enterprise specific trapse */
break;
default:
break;
} /* end switch (do_trap) */
do_trap = 0; /* reset do_trap switch */
}
#ifdef _NO_PROTO /* for classic K&R C */
static void await_and_read packet() /* await packet from DPI agent =*/
#else /+ _NO_PROTO */ /* for ANSI-C compiler =/

static void await_and read packet(void)/* await packet from DPI agent */
#endif / _NO_PROTO */

{
int len, rc, bytes_to_read, bytes_read = 0;
#ifdef 052
int socksY5 ;
#else
fd_set read_mask;
#endif
struct timeval timeout;
#ifdef 052
socksY0 = dpi_fd;
rc = select(socks, 1, 0, 0, -1L);
#else
FD_ZERO(&read mask);
FD_SET(dpi_fd, &read_mask); /* wait for data */
rc = select(dpi_fd+1, &read_mask, NULL, NULL, NULL);
#endif

20 z/OS V1R4.0 CS: IP Programmer's Reference

if (rc 1= 1) { /* exit on error */
DO_ERROR("await_and_read_packet: select");
close(dpi_fd);

exit(1);

}
#ifdef 0S2

Ten = recv(dpi_fd, inbuf, 2, 0); /* read 2 bytes first */
#else

len = read(dpi_fd, inbuf, 2); /* read 2 bytes first */
#endif

if (len <= 0) { /* exit on error or EOF =/

if (Ten < 0) DO_ERROR("await_and_read_packet: read");
else printf("Quitting, EOF received from DPI-agent\n");
close(dpi_fd);

exit(1l);
1
bytes to read = (inbuf¥® << 8) + inbuffl"; /* bytes to follow */
if (BUFSIZE < (bytes_to_read + 2)) { /* exit if too much */
printf("Quitting, packet larger than %d byte buffer\n",BUFSIZE);
close(dpi_fd);
exit(1);
}
while (bytes_to_read > 0) { /* while bytes to read */
#ifdef 052
socksY0 = dpi_fd;
len = select(socks, 1, 0, 0, 3000L);
#else
timeout.tv_sec = 3; /* wait max 3 seconds */
timeout.tv_usec = 0;
FD_SET(dpi_fd, &read_mask); /* check for data */

len = select(dpi_fd+1, &read mask, NULL, NULL, &timeout);
#endif

if (len == 1) { /* select returned OK */
#ifdef 052)
len = recv(dpi_fd, &inbufV2 + bytes read, bytes to_read, 0);
#else
Ten = read(dpi_fd, &inbuf¥2" + bytes read, bytes to_read);
#endif
} /* end if (len == 1) =/
if (len <= 0) { /* exit on error or EOF x/
if (Ten < 0) DO_ERROR("await_and read_packet: read");
printf("Can't read remainder of packet\n");
close(dpi_fd);
exit(1);
} else { /* count bytes_read */

bytes_read += Tlen;
bytes_to_read -= len;
}
} /* while (bytes to_read > 0) x/

1

#ifdef _NO_PROTO /* for classic K&R C */
static void handle_packet() /* handle DPI packet from agent */
#else /+ _NO_PROTO */ /* for ANSI-C compiler */

static void handle_packet(void) /* handle DPI packet from agent */
#endif /+* _NO_PROTO */
{
struct snmp_dpi_hdr *hdr;
if (debug_1vl > 2) {
printf("Received following SNMP-DPI packet:\n");
dump_bfr(inbuf, PACKET_LEN(inbuf));

}
hdr = pDPIpacket(inbuf); /* parse received packet */
if (hdr == 0) { /* ignore if can't parse */
printf("Ignore received packet, could not parse it!\n");
return;
}

packet = NULL;

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

21

var_type = 0;
var_oid ="";
var_gid ="";
switch (hdr->packet_type) {
/* extract pointers and/or data from specific packet types, */
/* such that we can use them independent of packet type. */
case SNMP_DPI_GET:
if (debug_1vl > 0) printf("SNMP_DPI GET for ");
var_oid = hdr->packet_body.dpi_get->object_id;
break;
case SNMP_DPI_GET_NEXT:
if (debug_Tvl > 0) printf("SNMP_DPI_GET_NEXT for ");

var_oid = hdr->packet_body.dpi_next->object_id;
var_gid = hdr->packet_body.dpi_next->group_id;
break;

case SNMP_DPI_SET:
if (debug _1vl > 0) printf("SNMP_DPI _SET for ");
var_value_len = hdr->packet_body.dpi_set->value_len;

var_value = hdr->packet_body.dpi_set->value;
var_oid = hdr->packet_body.dpi_set->object_id;
var_type = hdr->packet_body.dpi_set->type;
break;

default: /x Return a GEN_ERROR =/
if (debug _1vl > 0) printf("Unexpected packet_ type %d, genErr\n",
hdr->packet_type);
packet = mkDPIresponse(SNMP_GEN_ERR, NULL);
fDPIparse(hdr); /* return storage allocated by pDPIpacket() =/
send_packet (packet);
return;
break;
} /* end switch(hdr->packet type) =/
if (debug_1vl > 0) printf("objectID: %s \n",var_oid);
if (strlen(var_oid) <= strlen(0ID)) { /* not in our tree */
if (hdr->packet_type == SNMP_DPI_GET_NEXT) var_index = 0; /* OK %/
else { /* cannot handle */
if (debug_1v1>0) printf("...Ignored %s, noSuchName\n",var oid);
packet = mkDPIresponse(SNMP_NO_SUCH_NAME, NULL);
fDPIparse(hdr); /* return storage allocated by pDPIpacket() =/
send_packet (packet);
return;

} else { /* Extract our variable index (from OID.index.instance) =*/
/* We handle any instance the same (we only have one instance) =/
var_index = atoi(&var_oidYstrlen(0ID));

1
if (debug_Tvl > 1) {
printf("...The groupID=%s\n",var_gid);
printf("...Handle as if objectID=%s%d\n",0ID,var_index);

switch (hdr->packet type) {
case SNMP_DPI_GET:

do_get(); /* do a get to return response x/
break;

case SNMP_DPI_GET_NEXT:

{ char toidY256 ; /* space for temporary objectID =/
var_index++; /* do a get for the next variable */
sprintf(toid,"%s%d",0ID,var_index); /* construct objectID */
var_oid = toid; /* point to it */
do_get(); /* do a get to return response x/

} break;

case SNMP_DPI_SET:
if (debug_1vl > 1) printf("...value_type=%d\n",var_type);

do_set(); /* set new value first =/

if (packet) break; /* some error response was generated */
do_get(); /* do a get to return response */
break;

22 7/0S V1R4.0 CS: IP Programmer's Reference

fDPIparse(hdr); /* return storage allocated by pDPIpacket() =*/

}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_get() /* handle SNMP_GET request */

#else /x _NO_PROTO */ /* for ANSI-C compiler */

static void do_get(void) /* handle SNMP_GET request =*/
#endif /x _NO_PROTO =/

{
struct dpi_set_packet =data = NULL;
switch (var_index) f{
case 0: /* table, cannot be queried by itself =/
printf("...Should not issue GET for table %s.0\n", 0ID);
break;
case 1: /% a number =/
data = mkDPIset(var_oid,SNMP_TYPE NUMBER,sizeof (number),&number);
break;
case 2: /* an octet_string (can have binary data) */
data = mkDPIset(var_oid,SNMP_TYPE_STRING,ostring_len,ostring);
break;
case 3: /* object id */
data = mkDPIset(var_oid,SNMP_TYPE OBJECT,objectID Tlen,objectID);
break;
case 4: /* some empty variable */
data = mkDPIset(var_oid,SNMP_TYPE EMPTY,0,NULL);
break;
case 5: /x internet address */
data = mkDPIset(var_oid,SNMP_TYPE_INTERNET,sizeof(ipaddr),&ipaddr);
break;
case 6: /* counter (unsigned) =*/
data =mkDPIset(var_oid,SNMP_TYPE_COUNTER,sizeof(counter),&counter);
break;
case 7: /* gauge (unsigned) x/
data = mkDPIset(var_oid,SNMP_TYPE_GAUGE,sizeof(gauge),&gauge);
break;
case 8: /* time ticks (unsigned) =/
data = mkDPIset(var_oid,SNMP_TYPE TICKS,sizeof(ticks),&ticks);
break;
case 9: /* a display_string (printable ascii only) */
DO_ETOA(dstring);
data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(dstring),dstring);
DO_ATOE(dstring);
break;
case 10: /* a command request (command is a display string) =/
DO_ETOA(command) ;
data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(command),command);
DO_ATOE (command) ;
break;
default: /* Return a NoSuchName =*/
if (debug_1vl > 1))
printf("...GETYNEXT for %s, not found\n", var oid);
break;
} /* end switch (var_index) x/
if (data) {
if (debug_Tvl > 0) {
printf("...Sending response oid: %s type: %d\n",
var_oid, data->type);
printf("...... Current value: ");
print_val(var_index); /* prints \n at end */
}
packet = mkDPIresponse(SNMP_NO ERROR,data);
} else { /* Could have been an error in mkDPIset though */
if (debug_1vl > 0) printf("...Sending response noSuchName\n");
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
} /* end if (data) =/
if (packet) send_packet(packet);
1
#ifdef _NO_PROTO /* for classic K&R C */

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

23

static void do_set() /* handle SNMP_SET request */
#else /+ _NO_PROTO */ /* for ANSI-C compiler =/
static void do_set(void) /* handle SNMP_SET request =*/
#endif /% _NO_PROTO =/
{
unsigned Tong *ulp;
long *1p; }
if (valid_typesYvar_index != var_type &&
valid_typesYvar_index != -1) {
printf("...Ignored set request with type %d, expect type %d,",
var_type, valid_typesYvar_index);
printf(" Returning badValue\n");
packet = mkDPIresponse(SNMP_BAD VALUE, NULL);
if (packet) send_packet(packet);
return;
1
switch (var_index) {
case 0: /x table, cannot set table. */
if (debug_Tvl > 0) printf("...Ignored set TABLE, noSuchName\n");
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);

break;

case 1: /% a number */

1p = (long *)var_value;
number = *1p;

break;

case 2: /* an octet_string (can have binary data) */
free(ostring);
ostring = (char *)malloc(var_value_ len + 1);
bcopy(var_value, ostring, var_value_len);
ostring_len = var_value_len;
ostringYvar_value len = '\0'; /* so we can use it as a string */
break;
case 3: /* object id */
free(objectID);
objectID = (char *)malloc(var_value len + 1);
bcopy(var_value, objectID, var_value_len);
objectID_len = var_value_len;
if (objectIDYobjectID_Tlen -1) {
objectIDYobjectID Ten++ = '\0'; /x a valid one needs a null =/
if (debug_1vl > 0)
printf("...added a terminating null to objectID\n");
1

break;
case 4: /* an empty variable, cannot set =/

if (debug_Tvl > 0) printf("...Ignored set EMPTY, readOnly\n");
packet = mkDPIresponse(SNMP_READ ONLY,NULL);

break;
case 5: /* Internet address */

ulp = (unsigned Tong *)var_value;
ipaddr = xulp;

break;
case 6: /* counter (unsigned) =*/

ulp = (unsigned long *)var_value;
counter = *ulp;

break;
case 7: /* gauge (unsigned) =/

ulp = (unsigned long *)var_value;
gauge = *ulp;

break;
case 8: /x time ticks (unsigned) =/
ulp = (unsigned Tong *)var_value;
ticks = *ulp;

break;

case 9: /* a display_string (printable ascii only) */
free(dstring);

dstring = (char *)malloc(var_value_len + 1);
bcopy(var_value, dstring, var_value_len);

24 7/0S V1R4.0 CS: IP Programmer's Reference

dstringYvar_value len” = '\0'; /* so we can use it as a string */
DO_ATOE(dstring);

break;

case 10: /* a request to execute a command */

free(command) ;

command = (char *)malloc(var_value_len + 1);

bcopy (var_value, command, var_value_len);

commandYvar_value len = '\0'; /* so we can use it as a string */
DO_ATOE (command) ;

if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
else if (strcmp("std_traps",command) == 0) do_trap = STD_TRAPS;

else if (strcmp("ent_traps",command) == 0) do_trap = ENT_TRAPS;
else if (strcmp("ent_trapse",command) == 0) do_trap = ENT_TRAPSE;
else if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;

else if (strcmp("quit",command) == 0) do_quit = TRUE;
else break;
if (debug_1vl > 0)
printf("...Action requested: %s set to: %s\n",
DPI varY10 , command);
break;
default: /* NoSuchName =/
if (debug_1v1 > 0)
printf("...Ignored set for %s, noSuchName\n", var_oid);
packet = mkDPIresponse(SNMP_NO SUCH NAME,NULL);
break;
} /* end switch (var_index) */
if (packet) send_packet(packet);

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_std_traps()
#else /x NO_PROTO =/ /* for ANSI-C compiler =/

static void issue_std_traps(void)
#endif /+* _NO_PROTO =/

{
trap_stype = 0;
trap_data = dpi_hostname;
for (trap_gtype=0; trap_gtype<6; trap_gtypet+) {
issue_one_trap();
if (trap_gtype == 0) sleep(10); /* some managers purge cache */
1
1
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent traps()
#else /+ _NO_PROTO */ /* for ANSI-C compiler =/

static void issue_ent_traps(void)
#endif /% _NO_PROTO */
{
char temp_string¥256 " ;
trap_gtype = 6;
for (trap_stype = 1; trap_stype < 10; trap_stype++) {
trap_data = temp_string;
switch (trap_stype) {
case 1 :
sprintf(temp_string,"%1d",number) ;
break;
case 2 :
sprintf(temp_string,
break;
case 3 :
trap_data = objectID;
break;
case 4 :
trap_data
break;
case 5 :
trap_data = dpi_hostname;
break;

o

%s",ostring);

nn,
s

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

25

case 6 :
sleep(1); /* give manager a break */
sprintf(temp_string,"%1u",counter);
break;
case 7 :
sprintf(temp_string,"%1u",gauge);
break;
case 8 :
sprintf(temp_string,"%lu",ticks);
break;
case 9 :
trap_data = dstring;
break;
} /* end switch (trap_stype) */
issue_one_trap();
1
}
/* issue a set of extended traps, pass enterprise ID and multiple
* variable (assume octect string) as passed by caller

*/

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent trapse()

#else /+ _NO_PROTO =*/ /* for ANSI-C compiler =/

static void issue_ent trapse(void)
#endif /+ _NO_PROTO =*/
{
int i, n;
struct dpi_set_packet xdata = NULL;
unsigned char *packet = NULL;
unsigned Tong ipaddr, ulnum;
char 0id¥256 ;
char *cp;
trape_gtype = 6;
trape_eprise = ENTERPRISE_OID;
for (n=11; n < (11+0ID_COUNT_FOR _TRAPS); n++) {
data = 0;
trape_stype = n;
for (i=1; i<=(n-10); i++)
data = addtoset(data, 1i);
if (data == 0) {
printf("Could not make dpi_set packet\n");
return;
}
packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
if ((debug_Tvl > 0) && (packet)) {
printf("sending trape packet: %lu %lu enterprise=%s\n",
trape_gtype, trape_stype, trape_eprise);

if (packet) send_packet(packet);
else printf("Could not make trape packet\n");
}
}

/* issue one extended trap, pass enterprise ID and multiple
% variable (assume octect string) as passed by caller

*/

#ifdef _NO_PROTO /* for classic K&R C =/
static void issue one trape()

#else /x _NO_PROTO =/ /* for ANSI-C compiler =/

static void issue_one_trape(void)
#endif /= _NO_PROTO */
{
struct dpi_set packet xdata = NULL;
unsigned char *packet = NULL;
char 0id¥256 ;
char *cp;
int i;
for (i=0; i<trape_datacnt; i++) {

26 z/OS V1R4.0 CS: IP Programmer's Reference

sprintf(oid,"%s2.%d",0ID,1);
/* assume an octet_string (could have hex data) */
data = mkDPIlist(data, oid, SNMP_TYPE_STRING, ;
strlen(trape_dataYi), trape dataVi);

if (data == 0) {

printf("Could not make dpiset packet\n");
} else if (debug_1vl > 0) {

printf("Preparing: Yoid=%s value: ", oid);

printf("'"); .
for (cp = trape_data¥Yi ; *cp; cp++) /+* loop through data */
printf("%2.2x",*cp); /* hex print one byte */

printf("'H\n");
}

}

packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
if ((debug_1vl > 0) && (packet)) {

printf("sending trape packet: %lu %lu enterprise=%s\n",
trape_gtype, trape_stype, trape_eprise);
}

if (packet) send_packet(packet);
else printf("Could not make trape packet\n");

1

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trap()

#else /+ _NO_PROTO */ /* for ANSI-C compiler =/

static void issue one_trap(void)
#endif /* _NO_PROTO */

{

long int num; /% must be 4 bytes =/
struct dpi_set_packet xdata = NULL;
unsigned char *packet = NULL;
unsigned Tong ipaddr, ulnum;
char 0id¥256 ;
char *cp;
switch (trap_gtype) {
/* all traps are handled more or less the same sofar. =*/
/* could put specific handling here if needed/wanted. =*/
case 0: /* simulate cold start =/
case 1: /* simulate warm start =/
case 4: /* simulate authentication failure */
strcpy(oid,"none");
break;
case 2: /+ simulate link down =/
case 3: /x simulate Tink up x/
strcpy(oid,ifIndex);
num = 1;
data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
break;
case 5: /* simulate EGP neighbor Toss */
strcpy(oid,egpNeighAddr) ;
ipaddr = Tookup_host(trap_data);
data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
break;
case 6: /* simulate enterprise specific trap */
sprintf(oid,"%s%d.0",0ID, trap_stype);
switch (trap_stype) {
case 1: /* a number =/
num strtol(trap_data, (char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
break;
case 2: /* an octet_string (could have hex data) */
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
break;
case 3: /* object id */
data = mkDPIset(oid,SNMP_TYPE_OBJECT,strlen(trap_data) + 1,
trap_data);

break;

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

27

case 4: /* an empty variable value */
data = mkDPIset(oid, SNMP_TYPE_EMPTY, 0, 0);
break;
case 5: /* internet address */
ipaddr = Tookup_host(trap_data);
data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
break;
case 6: /* counter (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_COUNTER, sizeof(ulnum), &ulnum);
break;
case 7: /* gauge (unsigned) =/
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_GAUGE, sizeof(ulnum), &ulnum);
break;
case 8: /* time ticks (unsigned) =/
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_TICKS, sizeof(num), &ulnum);
break;
case 9: /* a display_string (ascii only) =*/
DO_ETOA(trap_data);
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
DO_ATOE(trap_data);
break;
default: /+ handle as string */
printf("Unknown specific trap type: %s, assume octet string\n",
trap_stype);
data = mkDPIset(oid,SNMP_TYPE _STRING,strlen(trap_data),trap _data);
break;
} /* end switch (trap_stype) */
break;
default: /* unknown trap */
printf("Unknown general trap type: %s\n", trap_gtype);
return;
break;
} /% end switch (trap_gtype) */
packet = mkDPItrap(trap_gtype,trap_stype,data);
if ((debug_Tvl > 0) && (packet)) {)
printf("sending trap packet: %u %u Yoid=%s value: ",
trap_gtype, trap_stype, oid);
if (trap_stype ==

printf("'");
for (cp = trap_data; *cp; cp++) /* loop through data */
printf("%2.2x",*cp); /* hex print one byte */

printf("'H\n");
} else printf("%s\n", trap_data);

}
if (packet) send_packet(packet);
else printf("Could not make trap packet\n");

}

#ifdef _NO_PROTO /* for classic K&R C */
static void send_packet (packet) /* DPI packet to agent =/
char *packet;

#else /+ _NO_PROTO */ /* for ANSI-C compiler =/

static void send packet(const char *packet) /* DPI packet to agent */
#endif /* _NO_PROTO */
{
int rc;
if (debug_Tvl > 2) {
printf("...Sending DPI packet:\n");
dump_bfr(packet, PACKET_LEN(packet));

}
#ifdef 0S2
rc = send(dpi_fd,packet,PACKET_LEN(packet),0);
#else
rc = write(dpi_fd, (unsigned char *)packet,PACKET_LEN(packet));
#endif

28 z/0S V1R4.0 CS: IP Programmer's Reference

if (rc != PACKET_LEN(packet)) DO_ERROR("send packet: write");

/* no need to free packet (static buffer in mkDPI.... routine) =/

1
#ifdef _NO_PROTO /* for classic K&R C */
static void do_register() /* register our objectIDs with agent */
#else /+ _NO_PROTO */ /* for ANSI-C compiler =/

static void do_register(void) /* register our objectIDs with agent */
#endif /+* NO_PROTO */
{
int i, rc;
char toidY¥256 ;
if (debug_Tvl > 0) printf("Registering variables:\n");
for (i=1; i<=0ID_COUNT; i++) {
sprintf(toid,"%s%d.",0ID,1);
packet = mkDPIregister(toid);

#ifdef 0S2

rc = send(dpi_fd, packet, PACKET LEN(packet),0);
#else

rc = write(dpi_fd, packet, PACKET_LEN(packet));
#endif

if (rc <= 0) {

DO_ERROR("do_register: write");

printf("Quitting, unsuccessful register for %s\n",toid);
close(dpi_fd);

exit(1);

1
if (debug_Tvl > 0) {
printf("...Registered: %-25s oid: %s\n",DPI_varVi ,toid);
printf("...... Initial value: ");
print_val(i); /* prints \n at end =/
1
1
/* add specified variable to 1ist of variable in the dpi_set_packet
*
/
#ifdef _NO_PROTO /* for classic K&R C */
struct dpi_set_packet xaddtoset(data, stype)
struct dpi_set packet xdata;
int stype;
#else /+ _NO_PROTO */ /* for ANSI-C compiler */
struct dpi_set packet *addtoset(struct dpi_set packet *data, int stype)
#endif /x _NO_PROTO */
{
char var_oid¥256 ;
sprintf(var_oid,"%s%d.0",0ID, stype);
switch (stype) {
case 1: /% a number =/
data = mkDPITist(data, var oid, SNMP_TYPE_NUMBER,
sizeof (number), &number);
break;
case 2: /* an octet_string (can have binary data) */
data = mkDPITist(data, var_oid, SNMP_TYPE_STRING,
ostring_len, ostring);
break;
case 3: /x object id =/
data = mkDPITist(data, var_oid, SNMP_TYPE OBJECT,
objectID len, objectID);
break;
case 4: /* some empty variable */
data = mkDPIlist(data, var_oid, SNMP_TYPE_EMPTY, O, NULL);
break;
case 5: /x internet address */
data = mkDPITlist(data, var_oid, SNMP_TYPE_INTERNET,
sizeof(ipaddr), &ipaddr);
break;
case 6: /* counter (unsigned) =*/
data =mkDPIlist(data, var oid, SNMP_TYPE_COUNTER,

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

29

sizeof(counter),

break;

case 7: /* gauge (unsigned) =/

data = mkDPIlist(data, var_oid,
sizeof(gauge),

break;

case 8: /* time ticks (unsigned)

data = mkDPIlist(data, var_oid,
sizeof(ticks),

break;

case 9:

DO_ETOA(dstring);
data = mkDPIlist(data, var_oid,

&counter);

SNMP_TYPE_GAUGE,
&gauge) ;

*/
SNMP_TYPE_TICKS,
&ticks);

/* a display_string (printable ascii only) =*/

SNMP_TYPE_STRING,

strlen(dstring), dstring);

DO_ATOE(dstring);
break;
} /* end switch (stype) */
return(data);
}
#ifdef NO_PROTO
static void print_val(index)
int index;
#else /+ _NO_PROTO =*/

/* for classic K&R C =/

/* for ANSI-C compiler */

static void print_val(const int index)

#endif /+ _NO_PROTO =*/
{
char *cp;
struct in_addr temp_ipaddr;
switch (index) {
case 1 :
printf("%1d\n",number);
break;
case 2 :
printf("'");

for (cp = ostring; cp < ostring + ostring_len; cp++)

printf("%2.2x",*cp);
printf("'H\n");
break;
case 3 :

printf("%*s\n", objectID len, objectID);

break;

case 4 :
printf("no value (EMPTY)\n");
break;

case 5 :

temp_ipaddr.s_addr = ipaddr;

printf("%s\n",inet_ntoa(temp_ipaddr));

/*

This worked on VM, MVS and AIX,

but not on 0S/2

* printf("%d.%d.%d.%d\n", (ipaddr >> 24), ((ipaddr << 8) >> 24),
* ((ipaddr << 16) >> 24), ((ipaddr << 24) >> 24));

*/

break;

case 6 :
printf("%lu\n",counter);
break;

case 7 :
printf("%lu\n",gauge);
break;

case 8 :
printf("%lu\n",ticks);
break;

case 9 :
printf("%s\n",dstring);
break;

case 10 :
printf("%s\n",command) ;
break;

30 z/0S V1R4.0 CS: IP Programmer's Reference

} /* end switch(index) */

1

#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments(argc, argv) /* check arguments =*/

int argc;

char *argvy ;

#else /+ _NO_PROTO */ /* for ANSI-C compiler =/

static void check_arguments(const int argc, char *argvy’)
#endif /+ _NO_PROTO */
{
char *hname, *cname;
int i, j;
dpi_userid = hname = cname = NULL;
for (i=1; argc > i; i++) {
if (strcmp(argvVi ,"-d") == 0) {
1++;
if (argc > i) {)
debug_Tv1 = atoi(argvVi);
if (debug_Tvl >= 5) {
DPIdebug(1);

}
} else if (stremp(argvVi ,"-trap") == 0) {
if (argc > i+3) {)
trap_gtype = atoi(argvVi+l);
trap_stype = atoi(argy?1+2)
trap_data = argvVi+3 ;
i=1+ 3
do_trap = ONE_TRAP;
} else usage(argv¥o , 1);
} else if (strcmp(argvVi ,"-trape") == 0) {
if (argc > i+4) {)
trape_gtype = strtou](argv?1+1",(char**)0,10);
trape_stype = strtou](grgv?i+2 , (charx%)0,10);
trape_eprise = argvVi+3 ;
for (i =1+ 4, j=0;
(argc > i) && (j < MAX_TRAPE_DATA);
i+, j++) |
trape data¥j = argvVi’;

}

trape_datacnt = j;

do_trap = ONE_TRAPE;

break; /* -trape must be last option */
} else usage(argv¥0 , 1);

} else if (strcmp(argvVi ,"-all_traps") == 0) {
do_trap = ALL_TRAPS;)

} else if (strcmp(argvYi ,"-std_traps") == 0) {
do_trap = STD_TRAPS;

} else if (strcmp(argvYi ,"-ent_traps") == 0) {
do_trap = ENT_TRAPS;

} else if (strcmp(argvVi ,"-ent_trapse") == 0) {
do_trap = ENT_TRAPSE;

#if defined(VM) || defined(MVS)

} else if (strcmp(argvVi ,"-inet") == 0) {
use_iucv = 0; ;

} else if (strcmp(argvVi ,"-iucv") == 0) {
use_iucv = TRUE; ;

} else if (strcemp(argvYi ,"-u") == 0) {
use_jucv = TRUE; /* -u implies -jucv */
it++;
if (argc > i) {)

dpi_userid = argv¥i ;

}
#endif ;
} else if (stremp(argvYi ,"?") == 0) {
usage(argv¥o , 0);
} else {

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

31

if (hname == NULL) hname = argv¥i’;
else if (cname f=“NULL) cname = argv¥i ;
else usage(argvYo , 1);

}

if (hname == NULL) hname = LOOPBACK; /* use default =/
if (cname == NULL) cname = PUBLIC_COMMUNITY_NAME; /+ use default */
#if defined(VM) || defined(MVS)
if (dpi_userid == NULL) dpi_userid = SNMPAGENTUSERID;
if (debug 1v1 > 2)
printf("hname=%s, cname=%s, userid=%s\n",hname,cname,dpi_userid);
#else
if (debug_1v1 > 2)
printf("hname=%s, cname=%s\n",hname,cname);

#endif
if (use_iucv != TRUE) {
DO_ETOA(cname) ; /* for VM or MVS */
dpi_port = query DPI port(hname,cname);
DO_ATOE (cname) ; /* for VM or MVS */

if (dpi_port == -1) {
printf("No response from agent at %s(%s)\n",hname,cname);
exit(1l);
}
} else dpi_port == -1;
dpi_hostname = hname;
1
#ifdef _NO_PROTO /* for classic K&R C */
static void usage(pname, exit_rc)
char *pname;
int exit_rc;
#else /x NO_PROTO =/ /* for ANSI-C compiler =/
static void usage(const char *pname, const int exit_rc)
#endif /+* _NO_PROTO =/
{
printf("Usage: %s Y-d debug_1v1™ Y-trap g_type s_type data ", pname);
printf(" Y-all_traps \n"); }
printf("%*sY-trape g_type s_type enterprise datal data2 .. datan \n",
strlen(pname)+8,""); 3)
printf("%*sY-std_traps Y-ent traps V-ent trapse \n",
strlen(pname)+8,"");
#if defined(VM) || defined(MVS))
printf("%*sY-iucv Y-u agent_userid \n",strlen(pname)+8, "");
printf("%xs", strlen(pname)+8, ""); .
printf("Y-inet Vagent hostname Ycommunity name \n");
printf("default: -d @ -iucv -u %s\n", SNMPAGENTUSERID);
printf(" -inet %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);
#else
printf("%+sVagent_hostname Ycommunity name” \n",strlen(pname)+8,"");
printf("default: -d 0 %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);

#endif

exit(exit_rc);
1
#ifdef NO_PROTO /% for classic K&R C %/
static void init_variables() /* initialize our variables x/
#else /* _NO_PROTO =*/ /* for ANSI-C compiler */
static void init_variables(void) /* initialize our variables =/
#endif /x _NO_PROTO */
{

char ch, *cp;

ostring = (char *)malloc(strlen(OSTRING) + 4 + 1);
bcopy (OSTRING,ostring,strlen(0STRING));

ostring len = strlen(OSTRING);

for (ch=1;ch<5;ch++)) /* add hex data 0x01020304 x/
ostring?ostr1n9_1en++ = ch;

ostringYostring len = '\0'; /* so we can use it as a string =/

objectID = (char *)malloc(strlen(0ID));

objectID len = strlen(0ID);

32 z/0S V1R4.0 CS: IP Programmer's Reference

bcopy (0ID,objectID,strlen(0ID));

if (objectIDYobjectID_len - 1 == '.')
objectIDYobjectID len - 1 = '\0';

else objectID_len++;

dstring = (char *)malloc(strlen(DSTRING)+1);

bcopy (DSTRING,dstring,strlen(DSTRING)+1);

command = (char *)malloc(strlen(COMMAND)+1);

bcopy (COMMAND, command, str1en(COMMAND)+1) ;

/* if trailing dot, =*/
/* remove it */
/* length includes null =/

ipaddr = dpi_ipaddress;

1

#ifdef NO_PROTO

static void init_connection()
#else /* _NO_PROTO */

/*
/*
/*

for classic K&R C */
connect to the DPI agent */
for ANSI-C compiler x/

static void init_connection(void) /* connect to the DPI agent */
#endif /+* NO_PROTO */
{
int rc;
int sasize; /* size of socket structure =/
struct sockaddr_in sin; /* socket address AF_INET */
struct sockaddr *Sa; /* socket address general */
#if defined(VM) || defined (MVS)
struct sockaddr_ijucv siu; /* socket address AF_IUCV */
if (use_iucv == TRUE) {
printf("Connecting to %s userid %s (TCP, AF_IUCV)\n",
dpi_hostname,dpi_userid); /* @P1Cx/
bzero(&siu,sizeof(siu));
siu.siucv_family = AF_IUCV;
siu.siucv_addr = 0; /* @P1C*/
siu.siucv_port = 0; /* @P1C*/
memset(siu.siucv_nodeid, ' ', sizeof(siu.siucv_nodeid));
memset(siu.siucv_userid, ' ', sizeof(siu.siucv_userid));
memset(siu.siucv_name, ' ', sizeof(siu.siucv_name));
bcopy (dpi_userid, siu.siucv_userid, min(8,strlen(dpi_userid)));
bcopy (SNMPIUCVNAME, siu.siucv_name, min(8,strlen(SNMPIUCVNAME)));
dpi_fd = socket(AF_IUCV, SOCK_STREAM, 0);
sa = (struct sockaddr *) &siu;
sasize = sizeof(struct sockaddr_jucv);
} else {
#endif

printf("Connecting to %s DPI_port %d (TCP, AF_INET)\n",
dpi_hostname,dpi_port);

bzero(&sin,sizeof(sin));
sin.sin_family =
sin.sin_port
sin.sin_addr.s_addr =

AF_INET;
htons (dpi_port);
dpi_ipaddress;

dpi_fd = socket (AF_INET, SOCK_STREAM, 0);
sa = (struct sockaddr *) &sin;
sasize = sizeof(struct sockaddr_in);

#if defined(VM) || defined (MVS)
}

#endif
if (dpi_fd < 0) {

/* exit on error x/

/* connect to agent x/

DO_ERROR("init_connection: socket");
exit(1);

rc = connect(dpi_fd, sa, sasize);

if (rc !'=0) {

DO_ERROR("init_connection:
close(dpi_fd);
exit(1);

}

1

#ifdef NO_PROTO

static void dump_bfr(buf, Ten)
char *buf;

int Ten;

#else /x _NO_PROTO */

/* exit on error *x/

connect");

/* for classic K&R C */
/* hex dump buffer =/

/* for ANSI-C compiler =/

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1

33

static void dump_bfr(const char *buf, const int Ten)
#endif /x _NO_PROTO */

{
register int i;
if (len == 0) printf(" empty buffer\n"); /x buffer is empty x/
for (i=0;i<len;i++) { /* loop through buffer x/
if ((i&15) == 0) printf(" "); _ /* indent new line */
printf("%2.2x", (unsigned char)bufYi);/* hex print one byte */
if ((i&15) == 15) printf("\n"); /* nl every 16 bytes */
else if ((i&3) == 3) printf(" "); /* space every 4 bytes =/
1
if (i&15) printf("\n"); /* always end with nl =/
1

34 z/0S V1R4.0 CS: IP Programmer's Reference

Chapter 3. SNMP agent Distributed Protocol Interface version
2.0

The simple network management protocol (SNMP) agent Distributed Protocol
Interface (DPI) permits you to dynamically add, delete, or replace management
variables in the local management information base (MIB). The SNMP DPI protocol
is also supported with the SNMP agent on 0S/2®, VM, and AIX®. This makes it
easier to port subagents between those platforms and z/OS, as well as connect
agents and subagents across these platforms.

The SNMP agent DPI Application Programming Interface (API) is for the DPI
subagent programmer.

The following RFCs are related to SNMP and will be helpful when you are
programming an SNMP API:

* RFC 1592 is the SNMP DPI 2.0 RFC.

* RFC 1901 through RFC 1908 are the SNMP Version 2 RFCs.

The primary goal of RFC 1592 is to specify the SNMP DPI. This is a protocol by
which subagents can exchange SNMP related information with an agent.

To provide an environment that is generally platform independent, RFC 1592
strongly suggests that you also define a DPI API. There is a sample DPI API
available in the RFC. The document describes the same sample API as the IBM
supported DPI Version 2.0 API. See [‘A DPI subagent example” on page 100}

SNMP agents and subagents

SNMP agents are primarily responsible for responding to SNMP operation requests.
An operation request can originate from any entity that supports the management
portion of the SNMP protocol. An example of this is zZOS UNIX SNMP command,
osnmp, shipped with this version of TCP/IP. Examples of SNMP operations are
GET, GETNEXT, and SET. An operation is performed on an MIB object.

A subagent extends the set of MIB objects provided by the SNMP agent. With the
subagent, you define MIB objects useful in your own environment and register them
with the SNMP agent.

When the agent receives a request for an MIB object, it passes the request to the
subagent. The subagent then returns a response to the agent. The agent creates
an SNMP response packet and sends the response to the remote network
management station that initiated the request. The existence of the subagent is
transparent to the network management station.

To allow the subagents to perform these functions, the agent provides for subagent
connections through:

e A TCP connection
* An AF_UNIX streams connection

For the TCP connections, the agent binds to an arbitrarily chosen TCP port and

listens for connection requests. A well-known port is not used. Every invocation of
the SNMP agent could potentially use a different TCP port.

© Copyright IBM Corp. 1989, 2002 35

For UNIX streams connections, the agent is within the same machine. AF_UNIX
connections should be used if possible, because they do not pass into TCP/IP, but
flow only within UNIX System Services and hence require fewer system resources.

A DPI SNMP Subagent does not have to directly retrieve a dpiMIB object or
objects, but instead uses either DPlconnect_to_agent_TCP() or
DPIconnect_to_agent_UNIXstream(). DPIlconnect_to_agent_TCP automatically
retrieves the object dpiPortForTCP from the dpiMIB through an SNMP agent.
DPIconnect_to_agent_TCP then establishes an AF_INET TCP socket connection
with the SNMP agent.

The query_DPI_port() function issued in Version 1.1 is implicitly run by the
DPIconnect_to_agent_TCP() function. The DPI subagent programmer would
normally use the DPIconnect_to_agent_TCP() function to connect to the agent, and
hence does not need to explicitly retrieve the value of the DPI TCP port.

Conversely, DPIconnect_to_agent_UNIXstream retrieves the value of the object
dpiPathNameForUnixStream from the dpiMIB to establish an AF_UNIX connection
with the SNMP agent.

After a successful connection to the SNMP agent the subagent registers the MIB
trees for the set of variables it supports with the SNMP agent. When all variable
classes are registered, the subagent waits for requests from the SNMP agent.

If connections to the SNMP agent are restricted by the security product, then the
security product user ID associated with the subagent must be permitted to the
agent’s security product resource name for the connection to be accepted. Refer to
the SNMP chapter in the [zZ0S Communications Server: IP Configuration Guide| for
more information about security product access between subagents and the z/OS
Communications Server SNMP agent.

DPI agent requests

The SNMP agent can initiate several DPI requests:
* CLOSE

« COMMIT

« GET

« GETBULK

« GETNEXT

 SET

« UNDO

* UNREGISTER

The GET, GETNEXT, and SET requests correspond to the SNMP requests that a
network management station can make. The subagent responds to a request with a
response packet. The response packet can be created using the mkDPIresponse()
library routine, which is part of the DPI API library.

The GETBULK requests are translated into multiple GETNEXT requests by the
agent. According to RFC 1592, a subagent can request that the GETBULK be
passed to it, but the z/OS version of DPI does not yet support that request.

The COMMIT, UNDO, UNREGISTER, and CLOSE are specific SNMP DPI
requests.

36 z/0S V1R4.0 CS: IP Programmer's Reference

The subagent normally responds to a request with a RESPONSE packet. For the
CLOSE and UNREGISTER request, the subagent does not need to send a
RESPONSE.

Related information

* [‘GETNEXT processing” on page 47|

* "UNREGISTER request” on page 48|

» [‘TRAP request” on page 48|

« [‘CLOSE request” on page 49|

» |"Overview of subagent processing” on page 100|
» |“Connecting to the agent” on page 10
* [‘Registering a subtree with the agent” on page 105|
« [‘Processing requests from the agent” on page 10§
* [‘Processing a GET request” on page 109
» [‘Processing a SET/COMMIT/UNDO request’ on page 116|

SNMP DPI version 2.0 library

z/OS CS provides the following DPI library routines:

Table 1. Components of DPI version 2.0

Name Contents Location
snmp_dpi.h header file /usr/Ipp/tcpip/snmp/include
snmp_IDPl.o + z/0S UNIX System Services |/usr/Ipp/tcpip/snmp/build/libdpi20
snmp_mDPl.o object files
snmp_gDPL.o * DPI Version 2.0 library
B functions

dpi_mvs_sample.c

SNMP DPI Version 2.0 C sample | /usr/lpp/tcpip/samples
source

dpiSimpl.mi2

SNMP DPI Version 2.0 sample | /usr/lpp/tcpip/samples
MIB definitions

SNMP DPI version 2.0 API

DPI Version 2.0 is intended for use with UNIX System Services sockets and is not
for use with other socket libraries. A DPI subagent must include the snmp_dpi.h
header in any C part that intends to use DPI. The Hierarchical File System (HFS)
path for snmp_dpi.h is /usr/lpp/tcpip/snmp/include. By default, when you include the
snmp_dpi.h include file, you will be exposed to the DPI Version 2.0 API. For a list of
the functions provided, read more about the [‘The snmp_dpi.h include file” on page]

This is the recommended use of the SNMP DPI API.

When you prelink your object code into an executable file, you must use the DPI
Version 2.0 functions as provided in the snmp_1DPI.o, snmp_mDPI.o, snmp _qDPI.o
object files in /usr/Ipp/tcpip/snmp/build/libdpi20.

Notes:

1. The object files are only located in UNIX System Services HFS. HFS files can
be accessed from JCL using the path parameter on an explicit DD definition.

2. Together the snmp_dpi.h include file and the dpi_mvs_sample.c file comprise an
example of the DPI Version 2.0 API.

3. Debugging information (resulting from the DPIdebug function) is routed to
SYSLOGD. Ensure the SYSLOG daemon is active.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 37

4. Compile your subagent code using the DEF(MVS) compiler option.

5. Waiting for a DPI packet depends on the platform and how the chosen transport
protocol is implemented. In addition, some subagents want to control the
sending of and waiting for packets themselves, because they might need to be
driven by other interrupts as well.

6. There is a set of DPI transport-related functions that are implemented on all
platforms to hide the platform-dependent issues for those subagents that do not
need detailed control for the transport themselves.

For more information about SNMP, refer to the [z/0S Communications Server: IF|
Configuration Referencd or the [z/0S Communications Server: IP System
Administrator's Commands,

Compiling and linking

DPI Version 2.0 is installed in HFS only. You can build a subagent for either the
UNIX System Services shell (using HFS and ¢89) or MVS (using JCL).

Refer to the documentation provided by your C compiler for exact details of building
a C application. The information provided in the following sections is intended as
general guidance.

From a UNIX System Services environment

Use ¢89 to compile a DPI subagent under the UNIX System Services shell. Every C
file using DPI functions must include the DPI header file (snmp_dpi.h) from
/usr/lpp/tcpip/snmp/include. Also include the three DPI library object files
(snmp_gDPI.o, snmp_1DPI.o, and snmp_mDPI.o) from
/usr/lpp/tcpip/snmp/build/libdpi20.

The following is an example of how c89 is called to compile and build
dpi_mvs_sample.c:

c89 -o dpi_mvs_sample -I /usr/Tpp/tcpip/snmp/include \
[usr/1pp/tcpip/samples/dpi_mvs_sample.c \
/usr/1pp/tcpip/snmp/build/1ibdpi20/snmp_1DPI.o\
/usr/1pp/tcpip/snmp/build/1ibdpi20/snmp_mDPI.o\
/usr/1pp/tcpip/snmp/build/1ibdpi20/snmp_qDPI.o

Use the - | option to add the HFS directory where snmp_dpi.h resides to the
compiler include search path.

From an MVS environment

C programs that use DPI must:

* Compile with the longname compiler option

* Include snmp_dpi.h from /usr/Ipp/tcpip/snmp/include

Add #include to the source code. You must inform the compiler that
/usr/Ipp/tcpip/snmp/include should be searched for include files. Use either a

SYSLIB DD with a PATH parameter pointing to the HFS directory, or use the
SEARCH compiler parameter.

Prelink DPI subagent to resolve longnames. In the prelink JCL, define three DDs
pointing to each DPI object file, and then include each, such as:

38 z/0S V1R4.0 CS: IP Programmer's Reference

DPI1 DD PATH='/usr/1pp/tcpip/snmp/build/1ibdpi20/snmp_1DPI.o'
DPI2 DD PATH='/usr/1pp/tcpip/snmp/build/1ibdpi20/snmp_mDPI.o'
DPI3 DD PATH='/usr/lpp/tcpip/snmp/build/1ibdpi20/snmp_gDPI.o"

INCLUDE ~ DPI1

INCLUDE ~ DPI2
INCLUDE ~ DPI3

Then, linkedit the prelink output as usual.

DPI version 1.x base code considerations

Use the DPI Version 1.1 API as described in [Chapter 2, “SNMP agent Distributed|
[Protocol Interface version 1.1” on page 3

The DPI Version 2.0 API provided with z/OS is for UNIX System Services sockets
use only. Earlier versions of DPI were supported on C sockets.

See [‘Migrating your SNMP DPI subagent to version 2.0”|for more detail about the
changes that you must make to your DPI Version 1.x source.

If you want to convert to DPI Version 2.0, which prepares you also for SNMP
Version 2, you must make changes to your code.

You can keep your existing DPI Version 1.1 subagent and communicate with a
DPI-capable agent that supports DPI Version 1.1 in addition to DPI Version 2.0. For
example, the z/ OS SNMP agent provides support for multiple versions of DPI,
including Version 1.0, Version 1.1, and Version 2.0.

SNMP DPI API version 1.1 considerations

The information presented in this section must be understood as guidelines and not
exact procedures. Your specific implementation will vary from the guidelines
presented.

Migrating your SNMP DPI subagent to version 2.0

When you want to change your DPI Version 1.x-based subagent code to the DPI
Version 2.0 level, use these guidelines for the required actions and the
recommended actions.

Required actions
The following actions are required to migrate SNMP DPI subagent to Version 2.0:

» Add an mkDPlopen() call and send the created packet to the agent. This opens
your DPI connection with the agent. Wait for the response and ensure that the
open is accepted. You need to pass a subagent ID (object identifier), which must
be a unique ASN.1 OID.

See [‘The mkDPlopen() function” on page 59|for more information.

» Change your mkDPlIregister() calls and pass the parameters according to the
new function prototype. You must also expect a RESPONSE to the REGISTER
request.

See |“The mkDPlIregister() function” on page 61|for more information.

» Change mkDPIset() and mkDPIllist() calls to the new mkDPIset() call. Basically all
mkDPIset() calls are now of the DPI Version 1.1 mkDPllist() form.

See [‘The mkDPIset() function” on page 65| for more information.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 39

Change mkDPltrap() and mkDPltrape() calls to the new mkDPltrap() call.
Basically all mkDPlItrap() calls are now of the DPI Version 1.1 mkDPltrape() form.

See [‘The mkDPltrap() function” on page 67|for more information.

Add code to recognize DPI RESPONSE packets, which should be expected as a
result of OPEN, REGISTER, and UNREGISTER requests.

Add code to expect and handle the DPI UNREGISTER packet from the agent. It
might send such packets if an error occurs or if a higher priority subagent
registers the same subtree as you have registered.

Add code to unregister your subtrees and close the DPI connection when you
want to terminate the subagent.

See [‘The mkDPlunregister() function” on page 69 and|[‘The mkDPIclose()|
[function” on page 58| for more information.

Change your code to use the new SNMP Version 2 error codes as defined in the
snmp_dpi.h include file.

When migrating DPI Version 1.1 subagents to DPI Version 2.0, remove the
include for manifest.h.

Change your code that handles a GET request. It should return a varBind with
SNMP_TYPE_noSuchObject value or SNMP_TYPE_noSuchinstance value
instead of an error SNMP_ERROR_noSuchName if the object or the instance do
not exist. This is not considered an error any more. Therefore, you should return
an SNMP_ERROR_noError with an error index of 0.

Note: A varBind (variable binding) is the group ID, instance ID, type, length, and
value that completely describes a variable in the MIB.

Change your code that handles a GETNEXT request. It should return a varBind
with SNMP_TYPE_endOfMibView value instead of an error
SNMP_ERROR_noSuchName if you reach the end of your MIB or subtree. This
is not considered an error any more. Therefore, you should return an
SNMP_ERROR_noError with an error index of 0.

Change your code that handles SET requests to follow the two-phase
SET/COMMIT scheme as described in ['SET processing” on page 45|

See the sample handling of SET/COMMIT/UNDO in
[SET/COMMIT/UNDO request” on page 116}

Recommended actions
The following actions are recommended:

Do not refer to the object ID pointer (object_p) in the snmp_dpi_xxxx_packet
structures any more. Instead start using the group_p and instance_p pointers.
The object_p pointer might be removed in a future version of the DPI API.

Check [Transport-related DPI API functions” on page 71|to see if you want to use
those functions instead of using your own code for those functions.

Consider using more than one varBind per DPI packet. You can specify this on
the REGISTER request. You must then be prepared to handle multiple varBinds
per DPI packet. The varBinds are chained through the various
snmp_dpi_xxxx_packet structures.

See |“The mkDPlopen() function” on page 59| for more information.

Consider specifying a timeout when you issue a DPI OPEN or DPI REGISTER.

Sed‘The mkDPlopen() function” on page 59 and [The mkDPIregister() function’|
|on page 61| for more information.
Ensure SYSLOGD is active. The result of using DPIldebug is routed to
SYSLOGD. For information on how to configure SYSLOGD, refer to the
[Communications Server: IP Configuration Referencd.

40 z/OS V1R4.0 CS: IP Programmer's Reference

DPI Version 2.0 recognizes mkDPllist; however, Version 2.0 subagents should use
mkDPlset instead.

Name changes
A number of field names in the snmp_dpi_xxxx_packet structures have changed so
that the names are now more consistent throughout the DPI code.

The new names indicate if the value is a pointer (_p) or a union (_u). The names
that have changed and that affect the subagent code are listed in the table below.

Old name

group_id
object_id
value

type

next
enterprise
packet_body
dpi_get
dpi_getnext

New name

group_p
object_p
value_p
value_type
next_p
enterprise_p
data_u
get_p
next_p

Data structure (XXXX)

getnext

get, getnext, set
set

set

set

trap

dpi_hdr

hdr (packet_body
hdr (packet_body

dpi_set

dpi_trap

)
()
set_p hdr (packet_body)
trap_p hdr (packet_body)

There is no clean approach to make this change transparent. You probably will
need to change the names in your code. You could try a simple set of defines like:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

packet_body
dpi_get
dpi_set
dpi_next
dpi_response
dpi_trap
group_id
object_id
value

type

next
enterprise

data_u
get_p
set p
next_p
resp_p
trap_p
group_p
object_p
value_p
value_type
next_p
enterprise_p

If the names conflict with other definitions, change your code.

Subagent programming concepts

When implementing a subagent, use the DPI Version 2 approach and keep the
following in mind:

* Use the SNMP Version 2 error codes only, even though there are definitions for
the SNMP Version 1 error codes.

* Implement the SET, COMMIT, UNDO processing properly.

» Use the SNMP Version 2 approach for GET requests, and pass back
noSuchlinstance value or noSuchObject value if appropriate. Continue to process
all remaining varBinds.

More than one varBind can be specified in the SNMP PDU for the requested
operation. For example, using the SNMP network manager, a user can request
the retrieval of multiple objects in the same request (GET or GETNEXT). The
varBind portion of the PDU sent would include multiple object identifiers (OIDs).
The subagent limitations are passed to the agent through the max_varBinds

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 41

parm on the mkDPlopen call. When the subagent receives a request from the
agent, it needs to handle multiple OIDs per request if it specified a max_varBinds
value other than 1.

Use the SNMP Version 2 approach for GETNEXT, and pass back endOfMibView
value if appropriate. Continue to process all remaining varBinds.

Specify the timeout period in the OPEN and REGISTER packets, when you are
processing a request from the agent (GET, GETNEXT, SET, COMMIT, or UNDO).

If you fail to respond within the timeout period, the agent will probably close your
DPI connection and discard your RESPONSE packet if it comes in later. If you
can detect that the response is not going to be received in the time period, then
you might decide to stop the request and return an SNMP_ERROR_genErr in the
RESPONSE.

Issue an SNMP DPI ARE_YOU_THERE request periodically to ensure that the
agent is still connected and still knows about you.

OS/2 runs on an ASCII based machine. However, when you are running a
subagent on an EBCDIC based machine and you use the (default) native
character set, all OID strings and all variable values of type
OBJECT_IDENTIFIER or DisplayString objects that are known by the agent (in
its compiled MIB) will be passed to you in EBCDIC format. OID strings include
the group ID, instance ID, enterprise ID, and subagent ID. You should structure
your response with the EBCDIC format.

If you receive an error RESPONSE on the OPEN packet, you will also receive a
DPI CLOSE packet with an SNMP_CLOSE_openError code. In this situation, the
agent closes the connection.

The DisplayString is only a textual convention. In the SNMP PDU (SNMP
packet), the type is an OCTET_STRING.

When the type is OCTET_STRING, it is not clear if this is a DisplayString or any
arbitrary data. This means that the agent can only know about an object being a
DisplayString if the object is included in some sort of a compiled MIB. If it is, the
agent will use SNMP_TYPE_DisplayString in the type field of the varBind in a
DPI SET packet. When you send a DisplayString in a RESPONSE packet, the
agent will handle it as such.

Related information

[‘A DPI subagent example” on page 100)|

Specifying the SNMP DPI API

The following sections describe each type of DPI processing in this order:

Connect processing

OPEN request

REGISTER request

GET, SET, GETNEXT, GETBULK, TRAP, and ARE_YOU_THERE processing
UNREGISTER request

CLOSE request

Connect processing

There are various connect functions that allow connections through either TCP or
UNIXstream. Determine which is appropriate for you by evaluating whether you are
connecting to the same machine or a different machine. If the agent and the
subagent are using the same machine, use the UNIXstream connection for better

42 7/OS V1R4.0 CS: IP Programmer's Reference

OPEN request

performance. If the agent and the subagent are using different machines, you must
use the TCP connection. There are two connect processing parameters:

* Hostname—name or the IP address of the agent

» Community name—password that allows the DPI connect function to obtain the
port (for TCP) or pathname (for UNIX) that allows the socket connect to occur.

Related information
[‘Connecting to the agent” on page 102

Next, the DPI subagent must open a connection with the agent. To do so, it must
send a DPI OPEN packet in which these parameters must be specified:

* The maximum timeout value in seconds. The agent is requested to wait this long
for a response to any request for an object being handled by this subagent.

The agent can have an absolute maximum timeout value which will be used if
the subagent asks for too large a timeout value. A value of 0 can be used to
indicate that the agent default timeout value should be used. A subagent is
advised to use a reasonably short interval of a few seconds or so. If a specific
subtree needs longer time, a specific REGISTER can be done for that subtree
with a longer timeout value.

* The maximum number of varBinds that the subagent is prepared to handle per
DPI packet. Specifying 1 would result in DPI Version 1 behavior of one varBind
per DPI packet that the agent sends to the subagent. A value of 0 means the
agent will try to combine up to as many varBinds as are present in the SNMP
packet that belongs to the same subtree.

* The character set you want to use. The default 0 value is the native character set
of the machine platform where the agent runs. Because the subagent and agent
normally run on the same system or platform, use the native character set, which
is EBCDIC on MVS.

If your platform is EBCDIC-based, using the native character set of EBCDIC
makes it easy to recognize the string representations of the fields, such as the
group ID and instance ID. At the same time, the agent translates the value from
ASCII NVT to EBCDIC and vice versa for objects that it knows from a compiled
MIB to have a textual convention of DisplayString. This fact cannot be
determined from the SNMP PDU encoding because, in the PDU, the object is
only known to be an OCTET_STRING.

If your subagent runs on an ASCll-based platform and the agent runs on an
EBCDIC-based platform (or the other way around), you can specify that you want
to use the ASCII character set. The agent and subagent programmers know how
to handle the string-based data in this situation.

* The subagent ID. This is an ASN.1 object identifier that uniquely identifies the
subagent. This OID is represented as a null-terminated string using the selected
character set.

For example: 1.3.5.1.2.3.4.5

« The subagent description. This is a DisplayString describing the subagent. This is
a character string using the selected character set.

For an example see |“A DPI subagent example” on page 100|.

After a subagent has sent a DPI OPEN packet to an agent, it should expect a DPI
RESPONSE packet that informs the subagent about the result of the request. The
packet ID of the RESPONSE packet should be the same as that of the OPEN

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 43

request to which the RESPONSE packet is the response. See[‘DPI RESPONSE]
ferror codes” on page 95| for a list of valid codes that can be expected.

If you receive an error RESPONSE on the OPEN packet, you will also receive a
DPI CLOSE packet with an SNMP_CLOSE_openError code. In this situation, the
agent closes the connection.

If the OPEN is accepted, the next step is to REGISTER one or more MIB subtrees.

Related information
[‘Connecting to the agent” on page 102

REGISTER request

Before a subagent will receive any requests for MIB objects, it must first register the
variables or subtree it supports with the SNMP agent. The subagent must specify
the following parameters in the REGISTER request:

» The subtree to be registered.

Object level registration: This is a null-terminated string in the selected
character set specifying the subtree to be registered. Object level registration
requires a trailing period following the object number, indicating a register request
to support all instances of an object (for example, ifDescr). Object level
registration requires the subtree must have a trailing period. For example:
1.3.6.1.2.1.2.2.1.2.

Instance level registration: Instance level registration does not require a trailing
period for the subtree. Instance level registration can be used to allow different
subagents to support separate instances of a particular MIB object. Registration
by subagents at the instance level rather than the object level is accomplished by
simply adding the instance number after the object number when building the
registration packet using the mkDPIregister call. For example, passing an object
number such as 1.3.6.1.2.1.2.2.1.2. (note the ending period) would support all
instances of ifDescr. However, a subagent could pass an object or instance
number like 1.3.6.1.2.1.2.2.1.2.8 (note the addition of the 8 after the period) to
support only ifDescr.8 (instance 8).

* The requested priority for the registration. The values are:

-1 Request for the best available priority

0 Request for the next best available priority than the highest (best) priority
currently registered for this subtree

NNN Any other positive value requests a specific priority, if available, or the
next best priority that is available.

* The maximum timeout value in seconds. The agent is requested to wait this long
for a response to any request for an object in this subtree. The agent can have
an absolute maximum timeout value which will be used if the subagents ask for
too large a timeout value. A value of 0 can be used to indicate that the DPI
OPEN value should be used for timeout.

After a subagent has sent a DPI REGISTER packet to the agent, it should expect a
DPI RESPONSE packet that informs the subagent about the result of the request.
The packet ID of the RESPONSE packet should be the same as that of the
REGISTER packet to which the RESPONSE packet is the response.

If the response is successful, the error_index field in the RESPONSE packet
contains the priority that the agent assigned to the subtree registration. See
[RESPONSE error codes” on page 95| for a list of valid codes that can be expected.

44 7/0S V1R4.0 CS: IP Programmer's Reference

Error Code: higherPriorityRegistered: The response to a REGISTER request
might return the error code "higherPriorityRegistered.” This might be caused by one
of the following:

* Another subagent already registered the same subtree at a better priority than
what you are requesting.

» Another subagent already registered a subtree at a higher level (at any priority).
For instance, if a registration already exists for subtree 1.2.3.4.5.6 and you try to
register for subtree 1.2.3.4.5.6.<anything> then you will get
"higherPriorityRegistered” error code.

If you receive this error code, your subtree will be registered, but you will not see
any requests for the subtree. They will be passed to the subagent that registered
with a better priority. If you stay connected, and the other subagent goes away, you
will get control over the subtree at that point in time.

Related information
[‘Registering a subtree with the agent” on page 105

GET processing

The DPI GET packet holds one or more varBinds that the subagent has taken
responsibility for.

If the subagent encounters an error while processing the request, it creates a DPI
RESPONSE packet with an appropriate error indication in the error_code field and
sets the error_index to the position of the varBind at which the error occurs. The
first varBind is index 1, the second varBind is index 2, and so on. No name, type,
length, or value information needs to be provided in the packet because, by
definition, the varBind information is the same as in the request to which this is a
response and the agent still has that information.

If there are no errors, the subagent creates a DPI RESPONSE packet in which the
error_code is set to SNMP_ERROR_noError (0) and error_index is set to 0. The
packet must also include the name, type, length, and value of each varBind
requested.

When you get a request for a nonexisting object or a nonexisting instance of an
object, you must return a NULL value with a type of SNMP_TYPE_noSuchObiject or
SNMP_TYPE_noSuchinstance respectively. These two values are not considered
errors, so the error_code and error_index should be O.

The DPI RESPONSE packet is then sent back to the agent.

Related information
[‘Processing a GET request” on page 109|
“The mkDPIresponse() function” on page 63

SET processing

A DPI SET packet contains the name, type, length, and value of each varBind
requested, plus the value type, value length, and value to be set.

If the subagent encounters an error while processing the request, it creates a DPI
RESPONSE packet with an appropriate error indication in the error_code field and
an error_index listing the position of the varBind at which the error occurs. The first
varBind is index 1, the second varBind is index 2, and so on. No name, type,

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 45

length, or value information needs to provided in the packet because, by definition,
the varBind information is the same as in the request to which this is a response
and the agent still has that information.

If there are no errors, the subagent creates a DPI RESPONSE packet in which the
error_code is set to SNMP_ERROR_noError (0) and error_index is set to 0. No
name, type, length, or value information is needed because the RESPONSE to a
SET should contain exactly the same varBind data as the data present in the
request. The agent can use the values it already has.

This suggests that the agent must keep state information, and that is the case. It
needs to do that anyway to be able to later pass the data with a DPI COMMIT or
DPI UNDO packet. Because there are no errors, the subagent must have allocated
the required resources and prepared itself for the SET. It does not yet carry out the
SET, which will be done at COMMIT time.

The subagent sends a DPI RESPONSE packet, indicating success or failure for the
preparation phase, back to the agent. The agent will issue a SET request for all
other varBinds in the same original SNMP request it received. This can be to the
same subagent or to one or more different subagents.

After all SET requests have returned a "no error” condition, the agent starts sending
DPI COMMIT packets to the subagents. If any SET request returns an error, the
agent sends DPI UNDO packets to those subagents that indicated successful
processing of the SET preparation phase.

When the subagent receives the DPI COMMIT packet, all the varBind information
will again be available in the packet. The subagent can now carry out the SET
request.

If the subagent encounters an error while processing the COMMIT request, it
creates a DPI RESPONSE packet with value SNMP_ERROR_commitFailed in the
error_code field and an error_index that lists at which varBind the error occurs. The
first varBind is index 1, the second varBind is 2, and so on. No name, type, length,
or value information is needed. The fact that a commitFailed error exists does not
mean that this error should be returned easily. A subagent should do all that is
possible to make a COMMIT succeed.

If there are no errors and the SET and COMMIT have been carried out with
success, the subagent creates a DPI RESPONSE packet in which the error_code is
set to SNMP_ERROR_noError (0) and error_index is set to 0. No name, type,
length, or value information is needed.

So far discussion has focused on successful SET and COMMIT sequences.
However, after a successful SET, the subagent might receive a DPI UNDO packet.
The subagent must now undo any preparations it made during the SET processing,
such as free allocated memory.

Even after a COMMIT, a subagent might still receive a DPI UNDO packet. This will
occur if some other subagent could not complete a COMMIT request. Because of
the SNMP requirement that all varBinds in a single SNMP SET request must be
changed as if simultaneous, all committed changes must be undone if any of the
COMMIT requests fail. In this case the subagent must try and undo the committed
SET operation.

46 z/OS V1R4.0 CS: IP Programmer's Reference

If the subagent encounters an error while processing the UNDO request, it creates
a DPI RESPONSE packet with value SNMP_ERROR_undoFailed in the error_code
field and an error_index that lists at which varBind the error occurs. The first
varBind is index 1, the second varBind is 2, and so on. No name, type, length, or
value information is needed. The fact that an undoFailed error exists does not mean
that this error should be returned easily. A subagent should do all that is possible to
make an UNDO succeed.

If there are no errors and the UNDO has been successful, the subagent creates a
DPI RESPONSE packet in which the error_code is set to SNMP_ERROR_noError
(0) and error_index is set to 0. No name, type, length, or value information is
needed.

Related information
[‘Processing a SET/COMMIT/UNDO request” on page 116|

GETNEXT processing

The DPI GETNEXT packet contains the objects on which the GETNEXT operation
must be performed. For this operation, the subagent is to return the name, type,
length, and value of the next variable it supports whose (ASN.1) name
lexicographically follows the one passed in the group ID (subtree) and instance ID.

In this case, the instance ID might not be present (NULL) in the incoming DPI
packet, implying that the NEXT object must be the first instance of the first object in
the subtree that was registered.

It is important to realize that a given subagent might support several discontinuous
sections of the MIB tree. In that situation, it would be incorrect to jump from one
section to another. This problem is correctly handled by examining the group ID in
the DPI packet. This group ID represents the reason why the subagent is being
called. It holds the prefix of the tree that the subagent had indicated it supported
(registered).

If the next variable supported by the subagent does not begin with that prefix, the
subagent must return the same object instance as in the request, for example the
group ID and instance ID with a value of SNMP_TYPE_endOfMibView (implied
NULL value). This endOfMibView is not considered an error, so the error_code and
error_index should be 0. If required, the SNMP agent will call upon the subagent
again, but pass it a different group ID (prefix). This is illustrated in the discussion
below.

Assume there are two subagents. The first subagent registers two distinct sections
of the tree: A and C. In reality, the subagent supports variables A.1 and A.2, but it
correctly registers the minimal prefix required to uniquely identify the variable class
it supports.

The second subagent registers section B, which appears between the two sections
registered by the first agent.

If a management station begins browsing the MIB, starting from A, the following
sequence of queries of the form GET-NEXT (group ID, instance ID) would be
performed:

Subagent 1 gets called:
get-next(A,none)
get-next(A,1)
get-next(A,2)

A.1l
A.2
end0fMibView

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 47

Subagent 2 is then called:
get-next(B,none) = B.1
get-next(B,1) = endOfMibView

Subagent 1 gets called again:
get-next(C,none) = C.1

Related information
None

GETBULK processing request

TRAP request

You must ask the agent to translate GETBULK requests into multiple GETNEXT
requests. This is basically the default and is specified in the DPI REGISTER packet.
The majority of DPI subagents will run on the same machine as the agent, or on
the same physical network. Therefore, repetitive GETNEXT requests remain local,
and, in general, should not be a problem.

Note: Currently, zZOS SNMP does not support GETBULK protocol between agent
and subagent. These requests are translated into multiple GETNEXT
requests.

Related information
[‘GETNEXT processing” on page 47

A subagent can request that the SNMP agent generates a trap. The subagent must
provide the desired values for the generic and specific parameters of the trap. It can
optionally provide a set of one or more name, type, length, or value parameters that
will be included in the trap packet.

It can optionally specify an enterprise ID (object identifier) for the trap to be
generated. If a NULL value is specified for the enterprise ID, the agent will use the
subagent identifier from the DPI OPEN packet as the enterprise ID to be sent with
the trap.

Related information
[‘Generating a TRAP” on page 119

ARE_YOU_THERE request

A subagent can send an ARE_YOU_THERE packet to the agent. If the connection
is in a healthy state, the agent responds with a RESPONSE packet with
SNMP_ERROR_DPI_noError. If the connection is not in a healthy state, the agent
might respond with a RESPONSE packet with an error indication, but the agent
might not react at all. In this situation, you would time out while waiting for a
response.

UNREGISTER request

A subagent can unregister a previously registered subtree. The subagent must
specify the following parameters in the UNREGISTER request:

* The subtree to be unregistered.

Object level unregistration: This is a null-terminated string in the selected
character set specifying the subtree to be unregistered. Object level
unregistration requires a trailing period following the object number, indicating an

48 2z/OS V1R4.0 CS: IP Programmer's Reference

unregister request to all supported instances of an object (for example, ifDescr).
Object level unregistration requires the subtree must have a trailing period. For
example: 1.3.6.1.2.1.2.2.1.2.

Instance level unregistration: Instance level unregistration does not require a
trailing period for the subtree.

Note: Unregistration at the instance level can only be done if the original
registration was done using instance level registration.
Unregistration by subagent at the instance level rather than the object level is
accomplished by simply adding the instance number after the object number
when building the unregistration packet using the mkDPlunregister call. For
example, passing an object number such as 1.3.6.1.2.1.2.2.1.2. (note the ending
period) would support all instances of ifDescr. However, a subagent could pass
an object or instance number like 1.3.6.1.2.1.2.2.1.2.8 (note the addition of the 8
after the period) to support only ifDescr.8 (instance 8).

« The reason for the unregister. See [[DPI UNREGISTER reason codes” on page|
@for a list of valid reason codes.

After a subagent has sent a DPI UNREGISTER packet to the agent, it should
expect a DPI RESPONSE packet that informs the subagent about the result of the
request. The packet ID of the RESPONSE packet should be the same as that of
the REGISTER packet to which the RESPONSE packet is the response. See
[RESPONSE error codes” on page 95| for a list of valid codes that can be expected.

A subagent should also be prepared to handle incoming DPI UNREGISTER packets
from the agent. In this situation, the DPI packet will contain a reason code for the
UNREGISTER. A subagent does not have to send a response to an UNREGISTER
request. The agent assumes that the subagent will handle it appropriately. The
registration is removed regardless of what the subagent returns.

Related information
[‘Processing an UNREGISTER request” on page 119

CLOSE request

When a subagent is finished and wants to end processing, it should first
UNREGISTER its subtrees and then close the connection with the agent. To do so,
it must send a DPI CLOSE packet, which specifies a reason for the closing. See
['DPI CLOSE reason codes” on page 95| for a list of valid codes. You should not
expect a response to the CLOSE request.

A subagent should also be prepared to handle an incoming DPI CLOSE packet
from the agent. In this case, the packet will contain a reason code for the CLOSE
request. A subagent does not have to send a response to a CLOSE request. The
agent assumes that the subagent will handle it appropriately. The close takes place
regardless of what the subagent does with it.

Related information

|“Processing a CLOSE request” on page 119|

Multithreading

programming considerations

The DPI Version 2.0 program does not support multithreaded subagents.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 49

There are several static buffers in the DPI code. For compatibility reasons, that
cannot be changed. Real multithread support will probably mean several potentially
incompatible changes to the DPI Version 2.0 API.

Use a locking mechanism: Because the DPI API is not reentrant, to use your
subagent in a multithreaded process you should use some locking mechanism of
your own around the static buffers. Otherwise, one thread might be writing into the
static buffer while another is writing into the same buffer at the same time. There
are two static buffers. One buffer is for building the serialized DPI packet before
sending it out and the other buffer is for receiving incoming DPI packets.

Basically, all DPI functions that return a pointer to an unsigned character are the
DPI functions that write into the static buffer to create a serialized DPI packet:
mkDPIAreYouThere()

mkDPIopen()

mkDPIregister()

mkDPIunregister()

mkDPItrap()

mkDPIresponse()

mkDPIpacket ()

mkDPIclose ()

After you have called the DPIsend_packet_to_agent() function for the buffer, which
is pointed to by the pointer returned by one of the preceding functions, the buffer is
free to use again.

There is one function that reads the static input buffer:
pDPIpacket ()

The input buffer gets filled by the DPlawait_packet_from_agent() function. Upon
return from the await, you receive a pointer to the static input buffer. The
pDPIpacket() function parses the static input buffer and returns a pointer to
dynamically allocated memory. Therefore, after the pDPIpacket() call the buffer is
available for use again.

The DPI internal handle structures and control blocks used by the underlying code
to send and receive data to and from the agent are also static data areas. Ensure
that you use your own locking mechanism around the functions that add, change, or
delete data in those static structures. The functions that change those internal static
structures are:

DPIconnect_to_agent TCP() /* everyone has this one */
DPIconnect to_agent UNIXstream() /* supported */
DPIdisconnect_from_agent() /* everyone has this one */

Other functions will access the static structures. These other functions must be
assured that the structure is not being changed while they are referencing it during
their execution. The other functions are:

DPIawait_packet_ from_agent()

DPIsend packet to_agent()
DPIget_fd_for_handle()

While the last three functions can be executed concurrently in different threads, you

must ensure that no other thread is adding or deleting handles in these static
structures during this process.

50 z/0S V1R4.0 CS: IP Programmer's Reference

Functions, data structures, and constants

Use these lists to locate the descriptions for the functions, data structures, and
constants.

Basic DPI Functions:

DP

“The DPldebug() function” on page 53
“The DPI_PACKET _LEN() macro” on page 54
“The fDPIparse() function” on page 55
“The fDPlset() function” on page 5
‘The mkDPIAreYouThere() function” on page 57|
“The mkDPIclose() function” on page 58

‘The mkDPlopen() function” on page 59

“The mkDPlregister() function” on page 61|

The mkDPIresponse() function” on age 6
“The mkDPIset() function” on page 65
“The mkDPltrap() function” on page 67|

“The mkDPlunregister() function” on page 69|
“The pDPlpacket() function” on page 70|

| Transport-Related Functions:

“The DPlawait_packet_from_agent() function” on page 72|

“The DPlconnect_to_agent_ TCP() function” on page 74}

“The DPIconnect_to_agent_UNIXstream() function” on page 76|

“The DPIldisconnect_from_agent() function” on page 78

“The DPIget _fd_for_handle() function” on page 79|

“The DPIsend_packet_to_agent() function” on page 80|

“The lookup_host() function” on page 82|

Data Structures:

“The snmp_dpi_close_packet structure” on page 84|

“The snmp_dpi_get_packet structure” on page 85|

“The snmp_dpi_hdr structure” on page 86|

“The snmp_dpi_next_packet structure” on page 88

“The snmp_dpi_resp_packet structure” on page 89|

“The snmp_dpi_set_packet structure” on page 90|

“The snmp_dpi_ureg_packet structure” on page 92

“The snmp_dpi_u64 structure” on page 93

Constants and Values:

“DP1 CLOSE reason codes” on page 95|

“DPI packet types” on page 95|

“DP| RESPONSE error codes” on page 95|

“DPI UNREGISTER reason codes” on page 96|

“DP| SNMP value types” on page 96|

“Value representation” on page 97

Rel

ated Information:

“Character set selection” on page 94|

“The snmp_dpi.h include file” on page 99

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0

51

Basic DPI API functions

This section describes each of the basic DPI functions that are available to the DPI
subagent programmer.

The Basic DPI Functions are:

* |“The DPldebug() function” on page 53
* |“The DPI_PACKET_LEN() macro” on page 54
“The fDPlparse() function” on page 55
function” on page 5
* |“The mkDPIAreYouThere() function” on page 5

¢ [(The mkDPIclose() function” on page 58|
* [“The mkDPlopen() function” on page 59

. [The mkD_IE’Iregister() function” on page 61|

« [[The mkDPIresponse() function” on age 63
* [‘The mkDPlset() function” on page 65
» |“The mkDPlirap() function” on page 67

+ [‘The mkDPlunregister() function” on page 69|
+ [“The pDPIpacket() function” on page 70|

52 z/0S V1R4.0 CS: IP Programmer's Reference

The DPIdebug() function
Format

#include <snmp_dpi.h>

void DPIdebug(int level);

Parameters

level If this value is 0, tracing is turned off. If it has any other value, tracing is
turned on at the specified level. The higher the value, the more detail. A
higher level includes all lower levels of tracing. Currently there are two
levels of detail:

1 Display packet creation and parsing.

2 Display hex dump of incoming and outgoing DPI packets.

Usage
The DPIldebug() function turns DPI internal debugging or tracing on or off.

The trace output is sent to the SYSLOG Daemon. Refer to the |z/0
[Communications Server: IP System Administrator's Commands|for more
information.

Examples
#include <snmp_dpi.h>

DPIdebug(2);

Context
“The snmp_dpi.h include file” on page 99|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 53

The DPI_PACKET_LEN() macro

Format
#include <snmp_dpi.h>

int DPI_PACKET_LEN(unsigned char *packet_p)

Parameters

packet_p
A pointer to a serialized DPI packet

Return Codes
An integer representing the total DPI packet length

Usage

The DPI_PACKET_LEN macro generates C code that returns an integer
representing the length of a DPI packet. It uses the first two octets in network byte
order of the packet to calculate the length.

Examples
#include <snmp_dpi.h>
unsigned char xpack_p;
int length;

pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
if (pack_p) {

Tength = DPI_PACKET_LEN(pack_p);

/* send packet to agent x/
} /% endif %/

54 z/0S V1R4.0 CS: IP Programmer's Reference

The fDPIparse() function

Format
#include <snmp_dpi.h>

void fDPIparse(snmp_dpi_hdr *hdr_p);

Parameters

hdr_p A pointer to the parse tree. The parse tree is represented by an
snmp_dpi_hdr structure.

Usage

The fDPIparse() function frees a parse tree that was previously created by a call to
pDPIlpacket(). The parse tree might have been created in other ways too. After
calling fDPIparse(), no further references to the parse tree can be made.

A complete or partial DPI parse tree is also implicitly freed by a call to a DPI
function that serializes a parse tree into a DPI packet. The section that describes
each function tells you if this is the case. An example of such a function is
mkDPIresponse().

Examples
#include <snmp_dpi.h>
snmp_dpi_hdr +hdr_p;
unsigned char *pack_p; /* assume pack_p points to =/
/* incoming DPI packet */
hdr_p = pDPIpacket(pack p);

/* handle the packet and when done do the following */
if (hdr_p) fDPIparse(hdr_p);

Context

“The snmp_dpi_hdr structure” on page 86|
“The pDPlpacket() function” on page 70|
“The snmp_dpi.h include file” on page 99|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 55

The fDPIset() function

Format
#include <snmp_dpi.h>

void fDPIset(snmp_dpi_set_packet *packet p);

Parameters

packet_p
A pointer to the first snmp_dpi_set_packet structure in a chain of such
structures.

Usage

The fDPIset() function is typically used if you must free a chain of one or more
snmp_dpi_set_packet structures. This might be the case if you are in the middle of
preparing a chain of such structures for a DPI RESPONSE packet, but then run into
an error before you can actually make the response.

If you get to the point where you make a DPI response packet to which you pass
the chain of snmp_dpi_set_packet structures, the mkDPIresponse() function will free
the chain of snmp_dpi_set_packet structures.

Examples

#include <snmp_dpi.h>

unsigned char *pack_p;

snmp_dpi_hdr *hdr_p;

snmp_dpi_set_packet xset_p, *first_p;

long int numl = 0, num2 = 0;

hdr_p = pDPIpacket(pack p); /* assume pack_p x/
/* analyze packet and assume all OK */ /* points to the x/

/* now prepare response; 2 varBinds */ /% incoming packet */

set_p = mkDPIset(snmp_dpi NULL p, /% create first one =/
"1.3.6.1.2.3.4.5.","1.0", /* 0ID=1, instance=0 =*/
SNMP_TYPE_Integer32,
sizeof(numl), &numl);

if (set_p) { /* if success, then =/
first_p = set_p; /* save ptr to first =/
set_ p = mkDPIset(set p, /* chain next one */
"1.3.6.1.2.3.4.5.","1.1", /* 0ID=1, instance=1 */

SNMP_TYPE_Integer32,

sizeof (num2), &num2);
if (set_p) { /* success 2nd one */
pack_p = mkDPIresponse(hdr p, /* make response */
SNMP_ERROR_noError, /* It will also free */
oL, first_p); /* the set_p tree */

/* send DPI response to agent */

} else { /* 2nd mkDPIset fail =/
fDPIset(first p); /* must free chain */

} /* endif =/
} /% endif =/

Context
“The fDPIlparse() function” on page 55|

“The snmp_dpi_set_packet structure” on page 90|
“The mkDPIresponse() function” on page 63

56 z/0S V1R4.0 CS: IP Programmer's Reference

The mkDPIAreYouThere() function

Format
#include <snmp_dpi.h>

unsigned char *mkDPIAreYouThere(void);

Parameters
None

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes

of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.

If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPIAreYouThere() function creates a serialized DPI ARE_YOU_THERE
packet that can be sent to the DPI peer, which is normally the agent.

A subagent connected through TCP or UNIXstream probably does not need this
function because, normally when the agent breaks the connection, you will receive
an EOF on the file descriptor.

If your connection to the agent is still healthy, the agent will send a DPI
RESPONSE with SNMP_ERROR_DPI_noError in the error code field and 0 in the
error index field. The RESPONSE will have no varBind data. If your connection is
not healthy, the agent might send a response with an error indication, or might not
send a response at all.

Examples

#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIAreYouThere();
if (pack_p) {

/* send the packet to the agent */
} /% endif x/
/* wait for response with DPIawait_packet from_agent() */
/* normally the response should come back pretty quickly, x/
/* but it depends on the load of the agent =*/

Context
“The snmp_dpi_resp_packet structure” on page 89|
“The DPlawait_packet_from_agent() function” on page 72|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 57

The mkDPIclose() function
Format
#include <snmp_dpi.h>
unsigned char *mkDPIclose(char reason_code);

Parameters

reason_code
The reason for closing the DPI connection. See [‘DPI CLOSE reason codes’|
on page 95]for a list of valid reason codes.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes

of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.

If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage

The mkDPIclose() function creates a serialized DPI CLOSE packet that can be sent
to the DPI peer. As a result of sending the packet, the DPI connection will be
closed.

Sending a DPI CLOSE packet to the agent implies an automatic DPI UNREGISTER
for all registered subtrees on the connection being closed.

Examples

#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIclose(SNMP_CLOSE_goingDown);

if (pack_p) {
/* send the packet to the agent */
} /% endif =/

Context
“The snmp_dpi_close_packet structure” on page 84

“DP| CLOSE reason codes” on page 95|

B8 z/0S V1R4.0 CS: IP Programmer's Reference

The mkDPlopen() function

Format

#include <snmp_dpi.h>

unsigned char *mkDPIopen(/* Make a DPI open packet */
char *0id_p, /* subagent Identifier (0ID) =/
char *description_p, /* subagent descriptive name */
unsigned Tong timeout, /* requested default timeout =/

unsigned long max_varBinds, /*

char

#define DPI_NATIVE CSET 0 /* 0
#define DPI_ASCII_CSET 1 /+ 1

unsigned Tong password len, /=
unsigned char *password_p); /*

max varBinds per DPI packet*/
selected character set */
native character set =/
ASCII character set =/

character_set, /*

Tength of password (if any)=*/
ptr to password (if any) */

Parameters

oid_p

A pointer to a null-terminated character string representing the object
identifier which uniquely identifies the subagent. The OID valued pointed to
by oid_p must be in the EBCDIC character set when communicating with a
TCP/IP UNIX System Services SNMP agent. The agent will add the OID
passed in the mkDPlopen call to the sysORTable as sysORID in a
corresponding new entry. By convention, sysORID should match a
capabilities statement OID to refer to the MIBs supported by the subagent.

For a list of MIB variables, refer to the [z20S Communications Server: IP
[System Administrator's Commands

description_p

A pointer to a null-terminated character string, which is a descriptive name
for the subagent. This can be any DisplayString.

timeout

The requested timeout for this subagent. An agent often has a limit for this
value and it will use that limit if this value is larger. A timeout of 0 has a
special meaning in the sense that the agent will use its own default timeout
value.

max_varBinds

The maximum number of varBinds per DPI packet that the subagent is
prepared to handle. It must be a positive number or 0.

» If a value greater than 1 is specified, the agent will try to combine as
many varBinds that belong to the same subtree per DPI packet as
possible up to this value.

» If a value of 0 is specified, the agent will try to combine up to as many
varBinds as are present in the SNMP packet and belong to the same
subtree; there is no limit on the number of varBinds present in the DPI
packet.

character_set

The character set that you want to use for string-based data fields in the
DPI packets and structures. See [‘Character set selection” on page 94| for
more information.

DPI_NATIVE_CSET
Specifies that you want to use the native character set of the
platform on which the agent that you connect to is running.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 59

password_len
The length in octets of an optional password. It depends on the agent
implementation if a password is needed.

If coded, this parameter is ignored with the zZOS SNMP agent.

password_p
A pointer to an octet string representing the password for this subagent. A
password might include any character value, including the NULL character.
If the password_len is 0, this can be a NULL pointer.

If coded, this parameter is ignored with the ® SNMP agent.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes

of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.

If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPlopen() function creates a serialized DPI OPEN packet that can then be
sent to the DPI peer that is a DPI-capable SNMP agent.

Normally you will want to use the native character set, which is the easiest for the
subagent programmer. However, if the agent and subagent each run on their own
platforms and those platforms use different native character sets, you must select
the ASCII character set, so that you both know exactly how to represent
string-based data that is being sent back and forth.

Currently, if you specify a password parameter, it will be ignored. You do not need
to specify a password to connect to the SNMP agent; you can pass a length of 0
and a NULL pointer for the password.

Examples

#include <snmp_dpi.h>
unsigned char xpack_p;

pack_p = mkDPIopen("1.3.6.1.2.3.4.5",
"Sample DPI subagent"
OL,2L, DPI_NATIVE CSET, /* max 2 varBinds =*/
0, (char *)0);
if (pack_p) f
/* send packet to the agent */
} /% endif =/

Context
“Character set selection” on page 94|

60 z/0OS V1R4.0 CS: IP Programmer's Reference

The mkDPIregister() function
Format

#include <snmp_dpi.h>

unsigned char *mkDPIregister(/* Make a DPI register packet */

unsigned short timeout, /* in seconds (16-bit) x/
long int priority, /* requested priority */
char *group_p, /* ptr to group ID (subtree) */
char bulk_select);/* Bulk selection (GETBULK) =*/
#define DPI_BULK_NO 0 /* map GETBULK into GETNEXTs =/
*/

Parameters

timeout

The requested timeout in seconds. An agent often has a limit for this value
and it will use that limit if this value is larger. The value 0 has special
meaning in the sense that it tells the agent to use the timeout value that
was specified in the DPI OPEN packet.

priority
The requested priority. This field can contain any of these values:
-1 Requests the best available priority.
0 Requests a better priority than the highest priority currently
registered. Use this value to obtain the SNMP DPI Version 1
behavior.

nnn Any positive value. You will receive that priority if available;
otherwise, you will receive the next best priority that is available.

group_p
A pointer to a null-terminated character string that represents the subtree to
be registered. For object level registration, this group ID must have a
trailing period. For instance level registration, this group ID would simply
have the instance number follow the object number subtree.

bulk_select
Specifies if you want the agent to pass GETBULK on to the subagent or to
map them into multiple GETNEXT requests. The choices are:

DPI_BULK_NO
Do not pass any GETBULK requests, but instead map a GETBULK
request into multiple GETNEXT requests.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes

of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.

If not failure, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage

The mkDPlregister() function creates a serialized DPI REGISTER packet that can
then be sent to the DPI peer that is a DPI-capable SNMP agent.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 61

Normally, the SNMP agent sends a DPI RESPONSE packet back. This packet
identifies if the register was successful or not.

The agent returns the assigned priority in the error index field of the response
packet.

Examples

#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIregister(0,0L,"1.3.6.1.2.3.4.5."
DPI_BULK NO);
if (pack_p) {
/* send packet to agent and await response */
} /% endif =/

Context
“The snmp_dpi_resp_packet structure” on page 89|

62 z/OS V1R4.0 CS: IP Programmer's Reference

The mkDPIresponse() function

Format
#include <snmp_dpi.h>

unsigned char *mkDPIresponse(/* Make a DPI response packet*/

snmp_dpi_hdr *hdr_p, /* ptr to packet to respnd tox/
Tong int error_code, /* error code: SNMP_ERROR_xxx*/
long int error_index, /* index to varBind in error */
snmp_dpi_set_packet *packet p);/* ptr to varBinds, a chain */
/* of dpi_set_packets */

Parameters

hdr_p A pointer to the parse tree of the DPI request to which this DPI packet will
be the response. The function uses this parse tree to copy the packet_id
and the DPI version and release, so that the DPI packet is correctly
formatted as a response.

error_code
The error code.

See ['DPI RESPONSE error codes” on page 95| for a list of valid codes.

error_index
Specifies the first varBind in error. Counting starts at 1 for the first varBind.
This field should be 0 if there is no error.

packet_p
A pointer to a chain of snmp_dpi_set_packet structures. This partial parse
tree will be freed by the mkDPIresponse() function, so upon return you
cannot refer to it anymore. Pass a NULL pointer if there are no varBinds to
be returned.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage

The mkDPIresponse() function is used at the subagent side to prepare a DPI
RESPONSE packet to a GET, GETNEXT, SET, COMMIT, or UNDO request. The
resulting packet can be sent to the DPI peer, which is normally a DPI-capable

SNMP agent.
Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set p;
long int num;
hdr_p = pDPIpacket(pack_p); /* parse incoming packet */
/* assume it's in pack_p */
if (hdr_p) {

/* analyze packet, assume GET, no error */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 63

set_p = mkDPIset(snmp_dpi_set packet NULL p,
"1.3.6.1.2.3.4.5.", "1.0",
SNMP_TYPE_Integer32,
sizeof (num), &num);

if (set_p) {

pack_p = mkDPIresponse(hdr_p,
SNMP_ERROR_noError, OL, set p);
if (pack_p) {
/* send packet to agent */
} /% endif =/
} /% endif =/
} /% endif =/

Context

“The pDPIpacket() function” on page 70|

“The snmp_dpi_hdr structure” on page 86|

“The snmp_dpi_set_packet structure” on page 90|

64 z/0S V1R4.0 CS: IP Programmer's Reference

The mkDPIset() function

Format
#include <snmp_dpi.h>

snmp_dpi_set_packet *mkDPIset(/* Make DPI set packet tree */

snmp_dpi_set_packet *packet_p, /* ptr to SET structure */
char *group_p, /* ptr to group ID(subtree)=*/
char xinstance_p,/* ptr to instance 0IDstring*/
int value_type,/* value type: SNMP_TYPE_xxx*/
int value_len, /* Tlength of value */
void *value_p); /* ptr to value */

Parameters

packet_p

A pointer to a chain of snmp_dpi_set_packet structures. Pass a NULL
pointer if this is the first structure to be created.

group_p
A pointer to a null-terminated character string that represents the registered
subtree that caused this GET request to be passed to this DPI subagent.
The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece following the subtree part, of the object identifier of the
variable instance being accessed. Use of the term instance_p here should
not be confused with an OBJECT instance because this string can consist
of a piece of the object identifier plus the INSTANCE IDENTIFIER.

value_type
The type of the value.

See r‘DPI SNMP value types” on page 96| for a list of currently defined value
types.

value_len
This is the value that specifies the length in octets of the value pointed to
by the value field. The length can be 0 if the value is of type
SNMP_TYPE_NULL.

The maximum value is 64KB - 1. However, the implementation often makes
the length significantly less.

value_p
A pointer to the actual value. This field can contain a NULL pointer if the
value is of implicit or explicit type SNMP_TYPE_NULL.

Return Codes
If successful and a chain of one or more packets was passed in the packet_p
parameter, the same pointer that was passed in packet_p is returned. A new
dynamically allocated structure has been added to the end of that chain of
snmp_dpi_get_packet structures.
If successful and a NULL pointer was passed in the packet_p parameter, a
pointer to a new dynamically allocated structure is returned.
If not successful, a NULL pointer is returned.

Usage

The mkDPlset() function is used at the subagent side to prepare a chain of one or
more snmp_dpi_set_packet structures. This chain is used to create a DPI

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 65

RESPONSE packet by a call to mkDPIresponse() that can be sent to the DPI peer,
which is normally a DPI-capable SNMP agent.

The chain of snmp_dpi_set_packet structures can also be used to create a DPI
TRAP packet that includes varBinds as explained in [‘The mkDPItrap() function” on|

ge 67|

For the value_len, the maximum value is 64KB - 1. However, the implementation
often makes the length significantly less. For example, the SNMP PDU size might
be limited to 484 bytes at the SNMP manager or agent side. In this case, the total
response packet cannot exceed 484 bytes, so a value_len is limited to 484 bytes.
You can send the DPI packet to the agent, but the manager will never see it.

Examples

#include <snmp_dpi.h>

unsigned char *pack_p;

snmp_dpi_hdr *hdr_p;

snmp_dpi_set_packet *set p;

long int num;

hdr_p = pDPIpacket(pack p) /* parse incoming packet */
/* assume it's in pack_p */

if (hdr_p) {

/* analyze packet, assume GET, no error */
set_p = mkDPIset(snmp_dpi_set packet NULL p,
"1.3.6.1.2.3.4.5.", "1.0",
SNMP_TYPE_Integer32,
sizeof (num), &num);
if (set_p) {
pack_p = mkDPIresponse(hdr p,
SNMP_ERROR_noError,
oL, set p);
if (pack_p)
/* send packet to agent */
} /% endif =/
} /% endif =/
} /% endif =/

If you must chain many snmp_dpi_set_packet structures, be sure to note that the
packets are chained only by forward pointers. It is recommended that you use the
last structure in the existing chain as the packet p parameter. Then, the underlying
code does not have to scan through a possibly long chain of structures to chain the
new structure at the end.

Context

“The pDPIpacket() function” on page 70|

“The mkDPIresponse() function” on page 63
“The mkDPltrap() function” on page 67

“The snmp_dpi_hdr structure” on page 86|

“The snmp_dpi_set_packet structure” on page 90|
“DPI SNMP value types” on page 96

“Value representation” on page 97

66 z/0S V1R4.0 CS: IP Programmer's Reference

The mkDPItrap() function

Format

#include <snmp_dpi.h>

unsigned char *mkDPItrap(/* Make a DPI trap packet */
long int generic, /% generic traptype (32 bit)=*/
long int specific, /x specific traptype (32 bit)x/
snmp_dpi_set_packet *packet_p, /* ptr to varBinds, a chain =/
/* of dpi_set_packets */
char *enterprise_p); /* ptr to enterprise 0ID x/
Parameters
generic

The generic trap type. The range of this value is 0-6, where 6, which is
enterprise specific, is the type that is probably used most by DPI subagent
programmers. The values in the range 0-5 are well defined standard SNMP
traps.

specific
The enterprise specific trap type. This can be any value that is valid for the
MIB subtrees that the subagent implements.

packet_p
A pointer to a chain of snmp_dpi_set_structures, representing the varBinds
to be passed with the trap. This partial parse tree will be freed by the
mkDPltrap() function so you cannot refer to it anymore upon completion of
the call. A NULL pointer means that there are no varBinds to be included in
the trap.

enterprise_p
A pointer to a null-terminated character string representing the enterprise 1D
(object identifier) for which this trap is defined. A NULL pointer can be used.
In this case, the subagent identifier, as passed in the DPI OPEN packet, will
be used when the agent receives the DPlI TRAP packet.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage

The mkDPltrap() function is used at the subagent side to prepare a DPl TRAP
packet. The resulting packet can be sent to the DPI peer, which is normally a
DPI-capable SNMP agent.

Examples

#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_set_packet *set p;
long int num;

set_p = mkDPIset(snmp_dpi_set_packet NULL p,
"1.3.6.1.2.3.4.5.", "1.0",

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 67

SNMP_TYPE_Integer32,
sizeof(num), &num);
if (set_p) {
pack_p = mkDPItrap(6,1,set_p, (char *)0);
if (pack_p) {
/* send packet to agent */
} /% endif %/
} /% endif */

Context
“The mkDPlset() function” on page 65|

68 z/0S V1R4.0 CS: IP Programmer's Reference

The mkDPlunregister() function

Format
#include <snmp_dpi.h>

unsigned char *mkDPIunregister(/* Make DPI unregister packet */

char reason_code; /* unregister reason code */
char *group_p); /* ptr to group ID (subtree) */
Parameters

reason_code
The reason for the unregister.

See ['DPI UNREGISTER reason codes” on page 96|for a list of the currently
defined reason codes.

group_p
A pointer to a null-terminated character string that represents the subtree to
be unregistered. For object level registration, this group ID must have a
trailing period. For instance level registration, this group ID would simply
have the instance number follow the object number subtree.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPlunregister() function creates a serialized DPI UNREGISTER packet that
can be sent to the DPI peer, which is a DPI-capable SNMP agent.

Normally, the SNMP peer then sends a DPI RESPONSE packet back. This packet
identifies if the unregister was successful or not.

Examples

#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIunregister(
SNMP_UNREGISTER_goingDown,
"1.3.6.1.2.3.4.5.");
if (pack_p) {
/* send packet to agent and await response */
} /% endif x/

Context
[The snmp_dpi_ureg_packet structure” on page 92|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 69

The pDPIlpacket() function

Format
#include <snmp_dpi.h>

snmp_dpi_hdr *pDPIpacket(unsigned char *packet p);

Parameters

packet_p
A pointer to a serialized DPI packet.

Return Codes
If successful, a pointer to a DPI parse tree (snmp_dpi_hdr) is returned. Memory
for the parse tree has been dynamically allocated, and it is the callers
responsibility to free it when no longer needed. You can use the fDPIparse()
function to free the parse tree.
If not successful, a NULL pointer is returned.

Usage

The pDPlpacket() function parses the buffer pointed to by the packet_p parameter.
It ensures that the buffer contains a valid DPI packet and that the packet is for a
DPI version and release that is supported by the DPI functions in use.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
hdr_p = pDPIpacket(pack_p); /* parse incoming packet */
/* assume it's in pack_p */
if (hdr_p) {

/* analyze packet, and handle it =/

}

Context

“The snmp_dpi_hdr structure” on page 86|
“The snmp_dpi.h include file” on page 99
“The fDPlparse() function” on page 55|

70 z/OS V1R4.0 CS: IP Programmer's Reference

Transport-related DPI API functions

This section describes each of the DPI transport-related functions that are available
to the DPI subagent programmer. These functions try to hide any platform specific
issues for the DPI subagent programmer so that the subagent can be made as
portable as possible. If you need detailed control for sending and awaiting DPI
packets, you might have to do some of the transport-related code yourself.

The transport-related functions are basically the same for any platform, except for
the initial call to set up a connection. SNMP currently supports the TCP transport
type, as well as UNIXstream.

The Transport-Related DPI API Functions are:

* [The DPlawait_packet from_agent() function” on page 7g|

* [“The DPIconnect to_agent TCP() function” on page 74

* |“The DPIconnect_to_agent UNIXstream() function” on page 76|
* |“The DPIdisconnect_from_agent() function” on page 78
+ [‘The DPIget_fd_for handle() function” on page 79|

+ [‘The DPIsend_packet to agent() function” on page 80|
+ [“The lookup_host() function” on page 89

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 71

The DPlawait_packet_from_agent() function
Format

#include <snmp_dpi.h>

int DPIawait_packet_from agent(/* await a DPI packet */
int handle, /* on this connection */
int timeout, /* timeout in seconds */
unsigned char *xmessage_p, /* receives ptr to data x/
unsigned long xTength); /% receives length of data */
Parameters
handle
A handle as obtained with a DPIlconnect_to_agent_xxxx() call.
timeout
A timeout value in seconds. There are two special values:
-1 Causes the function to wait forever until a packet arrives.
0 Means that the function will only check if a packet is waiting. If not,

an immediate return is made. If there is a packet, it will be returned.

message_p
The address of a pointer that will receive the address of a static DPI packet
buffer or, if there is no packet, a NULL pointer.

length The address of an unsigned long integer that will receive the length of the
received DPI packet or, if there is no packet, a 0 value.

Return Codes
If successful, a 0 (DPI_RC_OK) is returned. The buffer pointer and length of the
caller will be set to point to the received DPI packet and to the length of that
packet.
If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See |“Return codes from DPI transport-related functions” on page|
@ for a list of possible error codes.

DPI_RC_NOK
This is a return code indicating the DPI code is out of sync or has a bug.

DPI_RC_EOF
End of file on the connection. The connection has been closed.

DPI_RC_IO_ERROR
An error occurred with an underlying select() or recvfrom() call, or a DPI
packet was read that was less than 2 bytes. DPI uses the first 2 bytes to
get the packet length.

DPI_RC_INVALID_HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

DPI_RC_TIMEOUT
No packet was received during the specified timeout period.

DPI_RC_PACKET_TOO_LARGE
The packet received was too large.

72 2z/OS V1R4.0 CS: IP Programmer's Reference

Usage

The DPlawait_packet_from_agent() function is used at the subagent side to await a
DPI packet from the DPI-capable SNMP agent. The programmer can specify how
long to wait.

Examples
#include <snmp_dpi.h>
int handle;
unsigned char *pack_p;
unsigned Tong length;

handle = DPIconnect to_agent TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);

exit(1);
} /% endif =/
/* do useful stuff =/
rc = DPIawait_packet_from_agent(handle, -1,

&pack p, &length);

if (rc) {
printf("Error %d from await packet\n");
exit(1l);

} /% endif x/
/* handle the packet =/

Context
“The DPIconnect_to_agent_TCP() function” on page 74
“The DPIconnect_to_agent_UNIXstream() function” on page 76|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 73

The DPIconnect_to_agent_TCP() function
Format

#include <snmp_dpi.h>

int DPIconnect_to_agent_ TCP(/* Connect to DPI TCP port =/

char *hostname_p, /* target hostname/IP address =*/
char xcommunity p); /* community name */
Parameters

hostname_p
A pointer to a null-terminated character string representing the host name or
IP address in dotted decimal notation of the host where the DPI-capable
SNMP agent is running.

community_p
A pointer to a null-terminated character string representing the community
name that is required to obtain the dpiPort from the SNMP agent through
an SNMP GET request.

Note: For z/OS CS, the SNMP community passed by the subagent must
be in ASCII only.

Return Codes
If successful, a nhonnegative integer that represents the connection is returned. It is

to be used as a handle in subsequent calls to DPI transport-related functions.

If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See ['Return codes from DPI transport-related functions” on page 9§
for a list of possible error codes.

DPI_RC_NO_PORT
Unable to obtain the dpiPort number. There are many reasons for this, for
example: bad host name, bad community name, or default time-out (9
seconds) before a response from the agent.

DPI_RC_IO_ERROR
An error occurred with an underlying select(), or DPI was not able to set up
a socket (could be due to an error on a socket(), bind(), connect() call, or
other internal errors).

Usage
The DPIconnect_to_agent_TCP() function is used at the subagent side to set up a
TCP connection to the DPI-capable SNMP agent.

As part of the connection processing, the DPlconnect_to_agent_TCP() function
sends an SNMP GET request to the SNMP agent to retrieve the port number of the
DPI port to be used for the TCP connection. By default, this SNMP GET request is
sent to the well-known SNMP port 161. If the SNMP agent is listening on a port
other than well-known port 161, the SNMP_PORT environment variable can be set
to the port number of the SNMP agent prior to issuing the
DPIconnect_to_agent_TCP(). Use setenv() to override port 161 before using this
function.

Examples

#include <snmp_dpi.h>
int handle;

74 z/0S V1R4.0 CS: IP Programmer's Reference

handle = DPIconnect_to_agent TCP("127.0.0.1", "public");
if (handle < 0) {

}
Co

printf("Error %d from connect\n",handle);
exit(1l);
/* endif =/

ntext

“Return codes from DPI transport-related functions” on page 98|

“The DPIconnect_to_agent_UNIXstream() function” on page 76

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0

75

The DPIconnect_to_agent_UNIXstream() function

Format
#include <snmp_dpi.h>

int DPIconnect_to_agent_UNIXstream(/* Connect to DPI UNIXstream =/

char *hostname_p, /* target hostname/IP address =*/
char xcommunity p); /* community name */
Parameters

hostname_p
A pointer to a null-terminated character string representing the local host
name or IP address in dotted decimal notation of the local host where the
DPI-capable SNMP agent is running.

community_p
A pointer to a null-terminated character string representing the community
name that is required to obtain the UNIX® pathname from the SNMP agent
through an SNMP GET request.

Note: For z/OS CS, the SNMP community passed by the subagent must
be in ASCII only.

Return Codes
If successful, a nonnegative integer that represents the connection is returned. It

is to be used as a handle in subsequent calls to DPI transport-related functions.
If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See [‘Return codes from DPI transport-related functions” on page]
@ for a list of possible error codes.

DPI_RC_NO_PORT
Unable to obtain the UNIX pathname. There are many reasons for this, for
example: bad host name, bad community hame, or default time-out (9
seconds) before a response from the agent.

DPI_RC_IO_ERROR
An error occurred with an underlying select(), or DPI was not able to set up
a socket (could be due to an error on a socket(), bind(), connect() call, or
other internal errors).

Usage
The DPIconnect_to_agent_UNIXstream() function is used at the subagent side to
set up an AF_UNIX connection to the DPI-capable SNMP agent.

As part of the connection processing, the DPlconnect_to_agent_UNIXstream()
function will send an SNMP GET request to the SNMP agent to retrieve the
pathname to be used for the UNIX streams connection. By default, this SNMP GET
request is sent to the well-known SNMP port 161. If the SNMP agent is listening on
a port other than well-known port 161, the SNMP_PORT environment variable can
be set to the port number of the SNMP agent prior to issuing the
DPIconnect_to_agent_UNIXstream(). Use setenv() to override port 161 before using
this function.

Establishing Permission uses a pathname in the HFS as the name of the socket
for connect. This pathname is available at the SNMP agent through the MIB object
1.3.6.1.4.1.2.2.1.1.3, which has the name dpiPathNameForUnixStream. The SNMP
agent has a default name that it uses (/tmp/dpi_socket) if you do not supply another

76 z/0S V1R4.0 CS: IP Programmer's Reference

name in the agent startup parameter (-s) or in the OSNMPD.DATA file. Whatever
name is chosen, it has to live in the HFS as a character special file.

To run a user-written subagent from a nonprivileged userid, set the permission bits
for the character special file to write access. Otherwise, a subagent using this
function will have to be run from a superuser or other user with appropriate
privileges.

Examples

#include <snmp_dpi.h>
int handle;

handle = DPIconnect_to_agent_UNIXstream("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);

exit(1);
} /% endif x/

Context
“Return codes from DPI transport-related functions” on page 98]
“The DPlconnect_to_agent_ TCP() function” on page 7

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 77

The DPIdisconnect_from_agent() function

Format
#include <snmp_dpi.h>

void DPIdisconnect_from agent(/* disconnect from DPI (agent)=*/
int handle); /* close this connection */

Parameters

handle
A handle as obtained with a DPlconnect_to_agent_xxxx() call.

Usage
The DPIdisconnect_from_agent() function is used at the subagent side to terminate
a connection to the DPI-capable SNMP agent.

Examples

#include <snmp_dpi.h>
int handle;

handle = DPIconnect to_agent TCP("127.0.0.1", "public");
if (handle < 0) {
printf("Error %d from connect\n",handle);
exit(1);
} /% endif =/
/* do useful stuff =/
DPIdisconnect_from_agent(handle);

Context
“The DPIconnect to_agent TCP() function” on page 74}
“The DPIconnect_to_agent_UNIXstream() function” on page 76|

78 z/0S V1R4.0 CS: IP Programmer's Reference

The DPIget_fd_for_handle() function
Format

#include <snmp_dpi.h>

int DPIget_fd_for_handle(/* get the file descriptor */
int handle); /* for this handle */

Parameters

handle

A handle that was obtained with a DPIconnect_to_agent_xxxx() call.

Return Codes
If successful, a positive integer representing the file descriptor associated with the
specified handle.

If not successful, a negative integer is returned, which indicates the error that
occurred. See [‘Return codes from DPI transport-related functions” on page 98| for a
list of possible error codes.

DPI_RC_INVALID_HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

Usage

The DPIget_fd_for_handle function is used to obtain the file descriptor for the
handle, which was obtained with a DPIconnect_to_agent_TCP() call or a
DPIconnect_to_agent_UNIXstream() call.

Using this function to retrieve the file descriptor associated with your DPI
connections enables you to use either the select or selectex socket calls. Using
selectex enables your program to wait for event control blocks (ECBs), in addition
to a read condition. This is one example of how an MVS application can wait for
notification of the receipt of a modify command (through an ECB post) or DPI
packet at the same time.

Examples

#include <snmp_dpi.h>

#include /* other include files for BSD sockets and such =/
int handle;

int fd;

handle = DPIconnect_to_agent_TCP("127.0.0.1","public");
if (handle < 0) {
printf("Error %d from connect\n",handle);

exit(1);

1

fd = DPIget_fd_for_handle(handle);

if (fd <0) {
printf("Error %d from get fd\n",fd);
exit(1);

1

Context

“The DPIconnect_to_agent_TCP() function” on page 74|
“The DPIconnect_to_agent_UNIXstream() function” on page 76|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 79

The DPIsend_packet_to_agent() function

Format

#include <snmp_dpi.h>

int DPIsend_packet_to_agent(/* send a DPI packet */
int handle, /* on this connection */
unsigned char *message_p, /* ptr to the packet data =/
unsigned long length); /* length of the packet */

Parameters

handle

A handle as obtained with a DPlconnect_to_agent_xxxx() call.

message_p
A pointer to the buffer containing the DPI packet to be sent.

length The length of the DPI packet to be sent. The DPI_PACKET_LEN macro is a
useful macro to calculate the length.

Return Codes
If successful, a 0 (DPI_RC_OK) is returned.

If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See ['Return codes from DPI transport-related functions” on page 9§
for a list of possible error codes.

DPI_RC_NOK
This is a return code, but it really means the DPI code is out of sync or has
a bug.

DPI_RC_IO_ERROR
An error occurred with an underlying send(), or the send() failed to send all
of the data on the socket (incomplete send).

DPI_RC_INVALID_ARGUMENT
The message_p parameter is NULL or the length parameter has a value of
0.

DPI_RC_INVALID HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

Usage
The DPlsend_packet_to_agent() function is used at the subagent side to send a
DPI packet to the DPI-capable SNMP agent.

Examples
#include <snmp_dpi.h>
int handle;
unsigned char *pack_p;

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {
printf("Error %d from connect\n",handle);
exit(1l);
} /% endif =/
pack_p = mkDPIopen("1.3.6.1.2.3.4.5",
"Sample DPI subagent"
oL,2L,,DPI_NATIVE_CSET,
0, (char *)0);

80 z/0S V1R4.0 CS: IP Programmer's Reference

if (pack_p) {
rc = DPIsend_packet_to_agent(handle,pack_p,
DPI_PACKET_LEN(pack_p));

if (rc) {
printf("Error %d from send packet\n");
exit(1);
} /% endif %/
} else {
printf("Can't make DPI OPEN packet\n");
exit(1l);

} /% endif x/
/* await the response */

Context
“The DPIconnect_to_agent TCP() function” on page 74|

“The DPIconnect_to_agent UNIXstream() function” on page 76|
“The DPI_PACKET_LEN() macro” on page 54|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 81

The lookup_host() function

Format

#include <snmp_dpi.h>

unsigned long Tookup_host(/* find IP address in network =/
char *hostname_p); /* byte order for this host =/
Parameters

hostname_p
A pointer to a null-terminated character string representing the host name or
IP address in dotted decimal notation of the host where the DPI-capable
SNMP agent is running.

Return Codes
If successful, the IP address is returned in network byte order, so it is ready to be

used in a sockaddr_in structure.
If not successful, a value of 0 is returned.

Usage

The lookup_host() function is used to obtain the IP address in network byte order of
a host or IP address in dotted decimal notation. This function is implicitly executed
by both DPIconnect_to_agent_TCP and DPIconnect_to_agent UNIXstream.

Context
|"The DPIconnect_to_agent_TCP() function” on page 74|

82 z/0S V1R4.0 CS: IP Programmer's Reference

DPI structures

This section describes each data structure that is used in the SNMP DPI API:

“The snmp_dpi_close_packet structure” on page 84

“The snmp_dpi_get_packet structure” on page 8
“The snmp_dpi_hdr structure” on page 86

“The snmp_dpi_next |

“The snmp_dpi:set_;;acket structure” on page 90

“The snmp_dpi_ureg_packet structure” on page 92
“The snmp_dpi_u64 structure” on page 9

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0

83

The snmp_dpi_close_packet structure

Format
struct dpi_close_packet {
char reason_code; /* reason for closing */
}s
typedef struct dpi_close_packet snmp_dpi_close_packet;

#define snmp_dpi_close packet NULL p ((snmp_dpi_close_packet*)0)

Parameters

reason_code
The reason for the close.

See ['DPI CLOSE reason codes” on page 95| for a list of valid reason codes.

Usage
The snmp_dpi_close_packet structure represents a parse tree for a DPI CLOSE
packet.

The snmp_dpi_close_packet structure might be created as a result of a call to
pDPlpacket(). This is the case if the DPI packet is of type SNMP_DPI_CLOSE. The
snmp_dpi_hdr structure then contains a pointer to an snmp_dpi_close_packet
structure.

An snmp_dpi_close_packet_structure is also created as a result of an mkDPIclose()
call, but the programmer never sees the structure because mkDPlIclose()
immediately creates a serialized DPI packet from it and then frees the structure.

It is recommended that DPI subagent programmer uses mkDPIclose() to create a
DPI CLOSE packet.

Context

“The pDPIpacket() function” on page 70|
“The mkDPIclose() function” on page 58|
“The snmp_dpi_hdr structure” on page 86|

84 z/0S V1R4.0 CS: IP Programmer's Reference

The snmp_dpi_get_packet structure

Format

struct dpi_get_packet {
char *object p; /* ptr to OID string */
char *group_p; /* ptr to subtree(group)=*/
char *instance_p; /* ptr to rest of 0ID */
struct dpi_get _packet *next_p; /* ptr to next in chain =*/

1

typedef struct dpi_get packet snmp_dpi_get_packet;

#define snmp_dpi_get_packet_NULL_p ((snmp_dpi_get_packet *)0)

Parameters

object_p
A pointer to a null-terminated character string that represents the full object
identifier of the variable instance that is being accessed. It basically is a
concatenation of the fields group_p and instance_p. Using this field is not
recommended because it is only included for DPI Version 1 compatibility
and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the registered
subtree that caused this SET request to be passed to this DPI subagent.
The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece following the subtree part, of the object identifier of the
variable instance being accessed.

Use of the term instance_p here should not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

next_p
A pointer to a possible next snmp_dpi_get_packet structure. If this next field
contains the NULL pointer, this is the end of the chain.

Usage
The snmp_dpi_get_packet structure represents a parse tree for a DPI GET packet.

At the subagent side, the snmp_dpi_get_packet structure is normally created as a
result of a call to pDPlpacket(). This is the case if the DPI packet is of type
SNMP_DPI_GET. The snmp_dpi_hdr structure then contains a pointer to a chain of
one or more snmp_dpi_get_packet structures.

The DPI subagent programmer uses this structure to find out which variable
instances are to be returned in a DPI RESPONSE.

Context
“The pDPIpacket() function” on page 70|
“The snmp_dpi_hdr structure” on page 86|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 85

The snmp_dpi_hdr structure
Format

struct snmp_dpi_hdr {
unsigned char proto major; /* always 2: SNMP_DPI PROTOCOL*/

unsigned char proto_version; /* DPI version */
unsigned char proto_release; /* DPI release */
unsigned short packet_id; /* 16-bit, DPI packet ID x/
unsigned char packet_type; /+ DPI packet type */
union {

snmp_dpi_reg_packet *reg_p;

snmp_dpi_ureg_packet *ureg_p;

snmp_dpi_get_packet *get_p;

snmp_dpi_next_packet *next_p;

snmp_dpi_next_packet *bulk_p;

snmp_dpi_set_packet *set_p;

snmp_dpi_resp_packet *resp_p;

snmp_dpi_trap_packet *trap_p;

snmp_dpi_open_packet *open_p;

snmp_dpi_close_packet *xclose_p;

unsigned char *any_p;
} data_u;

}s
typedef struct snmp_dpi_hdr snmp_dpi_hdr;
#define snmp_dpi_hdr_NULL_p ((snmp_dpi_hdr *)0)

Parameters

proto_major
The major protocol. For SNMP DPI, it is always 2.

proto_version
The DPI version.

proto_release
The DPI release.

packet_id
This field contains the packet ID of the DPI packet. When you create a
response to a request, the packet ID must be the same as that of the
request. This is taken care of if you use the mkDPIresponse() function.

packet_type
The type of DPI packet (parse tree) that you are dealing with.

See ['DPI packet types” on page 95| for a list of currently defined DPI packet
types.

data_u
A union of pointers to the different types of data structures that are created
based on the packet _type field. The pointers themselves have names that
are self-explanatory.

The fields proto_major, proto_version, proto_release, and packet _id are basically for
DPI internal use, so the DPI programmer normally does not need to be concerned
about them.

Usage

The snmp_dpi_hdr structure is the anchor of a DPI parse tree. At the subagent
side, the snmp_dpi_hdr structure is normally created as a result of a call to
pDPIpacket().

86 z/0S V1R4.0 CS: IP Programmer's Reference

The DPI subagent programmer uses this structure to interrogate packets.
Depending on the packet_type, the pointer to the chain of one or more packet_type
specific structures that contain the actual packet data can be picked.

The storage for a DPI parse tree is always dynamically allocated. It is the
responsibility of the caller to free this parse tree when it is no longer needed. You
can use the fDPIparse() function to do that.

Note: Some mkDPIxxxx functions do free the parse tree that is passed to them. An
example is the mkDPIresponse() function.

Context

“The fDPIparse() function” on page 55|

“The pDPIpacket() function” on page 70|

‘The snmp_dpi_close_packet structure” on page 84|
“The snmp_dpi_get_packet structure” on page 85|
“The snmp_dpi_next_packet structure” on page 88
“The snmp_dpi_resp_packet structure” on page 89|
“The snmp_dpi_set_packet structure” on page 90|
“The snmp_dpi_ureg_packet structure” on page 92

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 87

The snmp_dpi_next_packet structure

Format

struct dpi_next_packet {
char *object p; /* ptr to 0ID (string) =*/
char *group_p; /* ptr to subtree(group)=*/
char xinstance_p;/* ptr to rest of 0ID */
struct dpi_next_packet *next p; /* ptr to next in chain =*/

1

typedef struct dpi_next_packet snmp_dpi_next_packet;

#define snmp_dpi_next_packet NULL p ((snmp_dpi_next_packet =*)0)

Parameters

object_p

A pointer to a null-terminated character string that represents the full object
identifier of the variable instance that is being accessed. It basically is a
concatenation of the fields group_p and instance_p. Using this field is not
recommended because it is only included for DPI Version 1 compatibility
and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the registered
subtree that caused this GETNEXT request to be passed to this DPI
subagent. This subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece following the subtree part, of the object identifier of the
variable instance being accessed.

Use of the term instance_p here should not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

next_p
A pointer to a possible next snmp_dpi_next_packet structure. If this next
field contains the NULL pointer, this is the end of the chain.

Usage
The snmp_dpi_next_packet structure represents a parse tree for a DPI GETNEXT
packet.

At the subagent side, the snmp_dpi_next_packet structure is normally created as a
result of a call to pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_GETNEXT. The snmp_dpi_hdr structure then contains a pointer to a
chain of one or more snmp_dpi_next_packet structures.

The DPI subagent programmer uses this structure to find out which variables
instances are to be returned in a DPI RESPONSE.

Context
“The pDPlpacket() function” on page 70|
“The snmp_dpi_hdr structure” on page 86|

88 z/0S V1R4.0 CS: IP Programmer's Reference

The snmp_dpi_resp_packet structure

Format

struct dpi_resp_packet {
char error_code; /* 1ike: SNMP_ERROR xxx */
unsigned long int error_index;/* 1st varBind in error =*/

#define resp_priority error_index /* if respons to registerx/
struct dpi_set_packet *varBind_p; /* ptr to varBind, chain %/
/* of dpi_set_packets */

ts

typedef struct dpi_resp_packet snmp_dpi_resp_packet;
#define snmp_dpi_resp_packet NULL p ((snmp_dpi_resp_packet *)0)
Parameters

error_code
The return code or the error code.

See ['DPI RESPONSE error codes” on page 95| for a list of valid codes.

error_index
Specifies the first varBind in error. Counting starts at 1 for the first varBind.
This field should be 0 if there is no error.

resp_priority
This is a redefinition of the error_index field. If the response is a response
to a DPI REGISTER request and the error_code is equal to
SNMP_ERROR_DPI_noError or
SNMP_ERROR_DPI_higherPriorityRegistered, then this field contains the
priority that was actually assigned. Otherwise, this field is set to O for
responses to a DPI REGISTER.

varBind_p
A pointer to the chain of one or more snmp_dpi_set_structures,
representing varBinds of the response. This field contains a NULL pointer if
there are no varBinds in the response.

Usage
The snmp_dpi_resp_packet structure represents a parse tree for a DPI RESPONSE
packet.

The snmp_dpi_resp_packet structure is normally created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_RESPONSE.
The snmp_dpi_hdr structure then contains a pointer to an snmp_dpi_resp_packet
structure.

At the DPI subagent side, a DPI RESPONSE should only be expected at
initialization and termination time when the subagent has issued a DPI OPEN, DPI
REGISTER, or DPI UNREGISTER request.

The DPI programmer is advised to use the mkDPIresponse() function to prepare a
DPI RESPONSE packet.

Context

“The pDPIpacket() function” on page 70|

“The mkDPIresponse() function” on page 63
“The snmp_dpi_set_packet structure” on page 90|
“The snmp_dpi_hdr structure” on page 86|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 89

The snmp_dpi_set_packet structure

Format

struct dpi_set_packet {
char *xobject p; /* ptr to Object ID (string) */
char *group_p; /* ptr to subtree (group) */
char xinstance_p; /* ptr to rest of 0ID */
unsigned char value_type; /* value type: SNMP_TYPE xxx =*/
unsigned short value_len; /* value length */
char *value p; /* ptr to the value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

1s

typedef struct dpi_set_packet snmp_dpi_set_packet;

#define snmp_dpi_set_packet NULL_p ((snmp_dpi_set_packet *)0)

Parameters

object_p
A pointer to a null-terminated character string that represents the full object
identifier of the variable instance that is being accessed. It basically is a
concatenation of the fields group_p and instance_p. Using this field is not
recommended because it is only included for DPI Version 1 compatibility
and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the registered
subtree that caused this SET, COMMIT, or UNDO request to be passed to
this DPI subagent. The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece following the subtree part, of the object identifier of the
variable instance being accessed.

Use of the term instance_p here should not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

value_type
The type of the value.

See ['DPI SNMP value types” on page 96|for a list of currently defined value
types.

value_len
This is an unsigned 16-bit integer that specifies the length in octets of the
value pointed to by the value field. The length can be 0 if the value is of
type SNMP_TYPE_NULL.

value_p
A pointer to the actual value. This field can contain a NULL pointer if the
value is of type SNMP_TYPE_NULL.

See ['Value representation” on page 97] for information on how the data is
represented for the various value types.

next_p
A pointer to a possible next snmp_dpi_set_packet structure. If this next field
contains the NULL pointer, this is the end of the chain.

Usage
The snmp_dpi_set_packet structure represents a parse tree for a DPI SET request.

90 z/OS V1R4.0 CS: IP Programmer's Reference

The snmp_dpi_set_packet structure might be created as a result of a call to
pDPIlpacket(). This is the case if the DPI packet is of type SNMP_DPI_SET,
SNMP_DPI_COMMIT, or SNMP_DPI_UNDOQO. The snmp_dpi_hdr structure then

con

tains a pointer to a chain of one or more snmp_dpi_set_packet structures.

This structure can also be created with an mkDPIset() call, which is typically used
when preparing varBinds for a DPI RESPONSE packet.

Co

ntext

“The pDPlpacket() function” on page 70|

“The mkDPIset() function” on page 65|

“DPI SNMP value types” on page 96

“Value representation” on page 97|

“The snmp_dpi_hdr structure” on page 86|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0

91

The snmp_dpi_ureg_packet structure

Format

struct dpi_ureg_packet {
char reason_code;/* reason for unregister */
char *group_p; /* ptr to subtree(group)=*/
struct dpi_ureg_packet xnext_p; /* ptr to next in chain =/

1s

typedef struct dpi_ureg_packet snmp_dpi_ureg_packet;

#define snmp_dpi_ureg_packet NULL_p ((snmp_dpi_ureg_packet *)0)

Parameters

reason_code
The reason for the unregister.

See ['DPI UNREGISTER reason codes” on page 96| for reason codes.

group_p
A pointer to a null-terminated character string that represents the subtree to
be unregistered. This subtree must have a trailing period.

next_p
A pointer to a possible next snmp_dpi_ureg_packet structure. If this next
field contains the NULL pointer, this is the end of the chain. Currently,
multiple unregister requests are not supported in one DPI packet, so this
field should always be 0.

Usage
The snmp_dpi_ureg_packet structure represents a parse tree for a DPI
UNREGISTER request.

The snmp_dpi_ureg_packet structure is normally created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_UNREGISTER. The snmp_dpi_hdr structure then contains a pointer to
an snmp_dpi_ureg_packet structure.

The DPI programmer is advised to use the mkDPlunregister() function to create a
DPI UNREGISTER packet.

Context

“The pDPIpacket() function” on page 70|
“The mkDPlunregister() function” on page 69|
“The snmp_dpi_hdr structure” on page 86|

92 7z/0S V1R4.0 CS: IP Programmer's Reference

The snmp_dpi_u64 structure

Format

struct snmp_dpi_u64 { /* for unsigned 64-bit int */
unsigned long high; /* - high order 32 bits */
unsigned long low; /* - low order 32 bits */

1
typedef struct snmp_dpi_u64 snmp_dpi_ub4;

Note: This structure is supported only in SNMP Version 2.

Parameters
high The high order, most significant, 32 bits.

low The low order, least significant, 32 bits.

Usage
The snmp_dpi_u64 structure represents an unsigned 64-bit integer as needed for
values with a type of SNMP_TYPE_Counter64.

The snmp_dpi_u64 structure might be created as a result of a call to pDPIpacket().
This is the case if the DPI packet is of type SNMP_DPI_SET and one of the values
has a type of SNMP_TYPE_Counter64. The value_p pointer of the
snmp_dpi_set_packet structure will then point to an snmp_dpi_u64 structure.

The DPI programmer must also use an snmp_dpi_u64 structure as the parameter
to an mkDPlset() call if you want to create a value of type
SNMP_TYPE_Counter64.

Context
“The pDPIpacket() function” on page 70|

“The snmp_dpi_set_packet structure” on page 90|
“DPI SNMP value types” on page 96
“Value representation” on page 97

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 93

Character set selection

The version of DPI Version 2.0 shipped with SNMP requires use of the EBCDIC
character set. Any DisplayString MIB objects known to the agent (in its compiled
MIB) supplied with SNMP will have ASCII conversion handled by the agent. The
subagent will always deal with the values of these objects in EBCDIC. Any portion
of an instance identifier that is a DisplayString must be in ASCII. The agent does
not handle instance IDs.

When the DPI subagent sends a DPI OPEN packet, it must specify the character
set that it wants to use. The subagent here needs to know or determine in an
implementation dependent manner if the agent is running on a system with the
same character set as the subagent. If you connect to the agent at loopback or
your own machine, you might assume that you are using the same character set.

The DPI subagent has two choices:

DPI_NATIVE_CSET
Specifies that you want to use the native character set of the platform on
which the agent that you connect to is running.

DPI_ASCII_CSET
Specifies that you want to use the ASCII character set. The agent will not
translate between ASCII and the native character set.

Although you can specify ASCII, the SNMP agent does not support it.

The DPI packets have a number of fields that are represented as strings. The fields

that must be represented in the selected character set are:

» The null-terminated string pointed to by the description_p, enterprise_p, group_p,
instance_p, and oid_p parameters in the various mkDPIxxxx(...) functions.

* The string pointed to by the value_p parameter in the mkDPIset(...) function, that
is if the value_type parameter specifies that the value is an
SNMP_TYPE_DisplayString or an SNMP_TYPE_OBJECT_IDENTIFIER.

* The null-terminated string pointed to by the description_p, enterprise_p, group_p,
instance_p, and oid_p pointers in the various snmp_dpi_xxxx_packet structures.

» The string pointed to by the value_p pointer in the snmp_dpi_set_packet
structure, that is if the value_type field specifies that the value is an
SNMP_TYPE_DisplayString or an SNMP_TYPE_OBJECT_IDENTIFIER.

Related information
[The mkDPlopen() function” on page 59|

Constants, values, return codes, and include file

This section describes all the constants and names for values as they are defined
in the snmp_dpi.h include file (see|“The snmp_dpi.h include file” on page 99b:
“DPI CLOSE reason codes” on page 95|

“DPI packet types” on page 95|

“DP|I RESPONSE error codes” on page 95|

“DP1 UNREGISTER reason codes” on page 96|

“DPI SNMP value types” on page 96|

“Value representation” on page 97|

“Value ranges and limits” on page 98|

“Return codes from DPI transport-related functions” on page 98

94 z/0S V1R4.0 CS: IP Programmer's Reference

DPI CLOSE reason codes

The currently defined DPI CLOSE reason codes as defined in the snmp_dpi.h
include file are:

#define SNMP_CLOSE_otherReason

#define SNMP_CLOSE_goingDown

#define SNMP_CLOSE_unsupportedVersion
#define SNMP_CLOSE_protocolError

#define SNMP_CLOSE_authenticationFailure
#define SNMP_CLOSE_byManager

#define SNMP_CLOSE_timeout

#define SNMP_CLOSE_openError

CONOYOT P WN =

These codes are used in the reason_code parameter for the mkDPlIclose() function
and in the reason_code field in the snmp_dpi_close_packet structure.

Related information

“The snmp_dpi_close_packet structure” on page 84|
“The mkDPIclose() function” on page 58]

DPI packet types

The currently defined DPI packet types as defined in the snmp_dpi.h include file
are:

#define SNMP_DPI_GET
#define SNMP_DPI_GET NEXT
#define SNMP_DPI_GETNEXT
#define SNMP_DPI_SET
#define SNMP_DPI_TRAP
#define SNMP_DPI_RESPONSE
#define SNMP_DPI REGISTER
#define SNMP_DPI_UNREGISTER
#define SNMP_DPI_OPEN
#define SNMP_DPI_CLOSE
#define SNMP_DPI_COMMIT 10

#define SNMP_DPI_UNDO 11

#define SNMP_DPI_GETBULK 12

#define SNMP_DPI TRAPV2 13 /* reserved, not implmented =*/
#define SNMP_DPI_INFORM 14 /* reserved, not implemented */
#define SNMP_DPI_ARE_YOU THERE 15

/* old DPI Version 1.x style =/

OOONOOTPHE WNN -

These packet types are used in the type parameter for the packet_type field in the
snmp_api_hdr structure.

Related information
[“The snmp_dpi_hdr structure” on page 86|

DPI RESPONSE error codes

In case of an error on an SNMP request like GET, GETNEXT, SET, COMMIT, or
UNDO, the RESPONSE can have one of these currently defined error codes. They
are defined in the snmp_dpi.h include file:

#define SNMP_ERROR_noError
#define SNMP_ERROR_tooBig
#define SNMP_ERROR noSuchName
#define SNMP_ERROR_badValue
#define SNMP_ERROR_readOnly
#define SNMP_ERROR_genErr

O wNDRF O

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 95

#define SNMP_ERROR noAccess 6
#define SNMP_ERROR_wrongType 7
#define SNMP_ERROR wronglLength 8
#define SNMP_ERROR_wrongEncoding 9
#define SNMP_ERROR_wrongValue 10
#define SNMP_ERROR noCreation 11
#define SNMP_ERROR_inconsistentValue 12
#define SNMP_ERROR resourceUnavailable 13
#define SNMP_ERROR_commitFailed 14
#define SNMP_ERROR undoFailed 15
#define SNMP_ERROR_authorizationError 16
#define SNMP_ERROR notWritable 17
#define SNMP_ERROR inconsistentName 18

In case of an error on a DPI only request (OPEN, REGISTER, UNREGISTER,
ARE_YOU_THERE), the RESPONSE can have one of these currently defined error
codes. They are defined in the snmp_dpi.h include file:

#define SNMP_ERROR_DPI_noError 0
#define SNMP_ERROR DPI otherError 101
#define SNMP_ERROR_DPI_notFound 102
#define SNMP_ERROR_DPI_alreadyRegistered 103
#define SNMP_ERROR_DPI_higherPriorityRegistered 104
#define SNMP_ERROR_DPI_mustOpenFirst 105
#define SNMP_ERROR DPI notAuthorized 106

#define SNMP_ERROR_DPI_viewSelectionNotSupported 107
#define SNMP_ERROR DPI getBulkSelectionNotSupported 108
#define SNMP_ERROR_DPI_duplicateSubAgentIdentifier 109
#define SNMP_ERROR_DPI_invalidDisplayString 110
#define SNMP_ERROR DPI characterSetSelectionNotSupported 111

These codes are used in the error_code parameter for the mkDPIresponse()
function and in the error_code field in the snmp_dpi_resp_packet structure.

Related information
“The snmp_dpi_resp_packet structure” on page 89|
“The mkDPIresponse() function” on page 63

DPI UNREGISTER reason codes

These are the currently defined DPI UNREGISTER reason codes. They are defined
in the snmp_dpi.h include file:

#define SNMP_UNREGISTER_otherReason

#define SNMP_UNREGISTER goingDown

#define SNMP_UNREGISTER_justUnregister

#define SNMP_UNREGISTER newRegistration

#define SNMP_UNREGISTER higherPriorityRegistered
#define SNMP_UNREGISTER_byManager

#define SNMP_UNREGISTER timeout

NOoO OB wWwWwN -

These codes are used in the reason_code parameter for the mkDPlunregister()
function and in the reason_code field in the snmp_dpi_ureg_packet structure.

Related information

“The snmp_dpi_ureg_packet structure” on page 9
“The mkDPlunregister() function” on page 69

DPI SNMP value types

These are the currently defined value types as as defined in the snmp_dpi.h include
file:

96 z/OS V1R4.0 CS: IP Programmer's Reference

#define SNMP_TYPE_MASK 0x7f /* mask to isolate type*/
#define SNMP_TYPE_Integer32 (128]1) /* 32-bit INTEGER */
#define SNMP_TYPE_OCTET_STRING 2 /x OCTET STRING */
#define SNMP_TYPE_OBJECT IDENTIFIER 3 /* OBJECT IDENTIFIER =*/
#define SNMP_TYPE_NULL 4 /* NULL, no value */
#define SNMP_TYPE_IpAddress 5 /* IMPLICIT OCTETSTRING=*/
#define SNMP_TYPE_Counter32 (128]6) /* 32-bit Counter */
#define SNMP_TYPE Gauge32 (128]7) /* 32-bit Gauge */
#define SNMP_TYPE_TimeTicks (128]8) /* 32-bit TimeTicks in */

/* hundredths of a sec */
#define SNMP_TYPE_DisplayString 9 /x DisplayString (TC) =*/
#define SNMP_TYPE BIT_STRING 10 /+ BIT STRING */
#define SNMP_TYPE_NsapAddress 11 /+ IMPLICIT OCTETSTRING*/
#define SNMP_TYPE Ulnteger32 (128]12) /* 32-bit INTEGER */
#define SNMP_TYPE_Counter64 13 /* 64-bit Counter */
#define SNMP_TYPE_Opaque 14 /+ IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_noSuchObject 15 /+ IMPLICIT NULL */
#define SNMP_TYPE_noSuchInstance 16 /* IMPLICIT NULL */
#define SNMP_TYPE_endOfMibView 17 /+ IMPLICIT NULL */

These value types are used in the value_type parameter for the mkDPIset() function

and in the value_type field in the snmp_dpi_set_packet structure.

Related information

“The snmp_dpi_set_packet structure” on page 90|

“The mkDPIset() function” on page 65|

“Value representation” on page 97

“Value ranges and limits” on page 98|

Value representation

Values in the snmp_dpi_set_packet structure are represented as follows:

» 32-bit integers are defined as long int or unsigned long int. A long int is assumed
to be 4 bytes.

* 64-bit integers are represented as an snmp_dpi_u64.

Unsigned 64 bit integers are only dealt with in SNMP. In a structure that has two
fields, the high order piece and the low order piece, each is of type unsigned
long int. These are assumed to be 4 bytes.

Object identifiers are null-terminated strings in the selected character set,
representing the OID in ASN.1 dotted decimal notation. The length includes the
terminating NULL.

An ASCIl example:
'312e332e362e312e322e312e312e312e3000'h

represents "1.3.6.1.2.1.1.1.0” which is sysDescr.0.

An EBCDIC example:
'f14bf34bf64bf14bf24bf14bf14bf14bf000"'h

represents "1.3.6.1.2.1.1.1.0" which is sysDescr.0.

DisplayStrings are in the selected character set. The length specifies the length
of the string.

An ASCIl example:
'6162630d0a"'h

represents "abc\r\n”, no NULL.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 97

An EBCDIC example:
'8182830d25"'h

represents "abc\r\n”, no NULL.

IpAddress and Opaque are implicit OCTET_STRING, so they are a sequence of
octets or bytes. This means, for instance, that the IP address is in network byte
order.

NULL has a 0 length for the value, no value data, so a NULL pointer is returned
in the value_p field.

noSuchObject, noSuchinstance, and endOfMibView are implicit NULL and are
represented as such.

BIT_STRING is an OCTET_STRING of the form uubbbb...bb, where the first
octet (uu) is 0x00-0x07 and indicates the number of unused bits in the last octet
(bb). The bb octets represent the bit string itself, where bit 0 comes first and so
on.

Related information

[“Value ranges and limits” on page 98|

Value ranges and limits

The following rules apply to object IDs in ASN.1 notation:

The object ID consists of 1 to 128 sublDs, which are separated by periods.
Each sublD is a positive number. No negative numbers are allowed.

The value of each number cannot exceed 4294967295. This value is 2 to the
power of 32 minus 1.

The valid values of the first subID are 0, 1, or 2.

If the first sublD has a value of 0 or 1, the second subID can only have a value
of 0 through 39.

The following rules apply to DisplayString:

A DisplayString (Textual Convention) is basically an OCTET STRING in SNMP
terms.

The maximum size of a DisplayString is 255 octets or bytes.

More information on the DPI SNMP value types can be found in the SNMP
Structure of Management Information (SMI) and SNMP Textual Conventions (TC)
RFCs. These two RFCs are RFC 1902 and RFC 1903.

Return codes from DPI transport-related functions

These are the currently defined values for the return codes from DPI
transport-related functions. They are defined in the snmp_dpi.h include file:

#define DPI_RC_OK 0 /* all 0K, no error */
#define DPI_RC_NOK -1 /* some other error */
#define DPI_RC_NO_PORT -2 /* can't determine DPIport =*/
#define DPI_RC_NO_CONNECTION -3 /* no connection to DPIagent*/
#define DPI_RC_EOF -4 /* EQOF receivd on connection*/
#define DPI_RC_IO ERROR -5 /* Some I/0 error on connectx/
#define DPI_RC_INVALID_HANDLE -6 /* unknown/invalid handle */
#define DPI_RC_TIMEOUT -7 /* timeout occurred */

98 z/0S V1R4.0 CS: IP Programmer's Reference

#define DPI_RC_PACKET TOO LARGE -8 /* packed too large, dropped*/
#define DPI_RC_UNSUPPORTED_DOMAIN -9 /*unsupported domain for connect*/
#define DPI_RC_INVALID ARGUMENT -10 /*invalid argument passed*/

These values are used as return codes for the transport-related DPI functions.

Related information

“The DPIconnect to_agent TCP() function” on page 74|

“The DPlconnect_to_agent UNIXstream() function” on page 76|
“The DPlawait_packet _from_agent() function” on page 72|

“The DPIsend_packet_to_agent() function” on page 80|

The snmp_dpi.h include file

#include <snmp_dpi.h>

Parameters

None

Description

The snmp_dpi.h include file defines the SNMP DPI API to the DPI subagent
programmer. It has all the function prototype statements, and it also has the
definitions for the snmp_dpi structures.

The same include file is used at the agent side, so you will see some definitions
that are unique to the agent side. Also, other functions or prototypes of functions
not implemented on SNMP might exist. Therefore, only use the APl as it is
documented in this manual.

Related information

Macros, functions, structures, constants, and values defined in the snmp_dpi.h
include file are:

+ [The DPlawait_packet_from_agent() function” on page 72
[The DPIconnect to_agent TCP() function” on page 74|
[The DPlconnect_to_agent_UNIXstream() function” on page 76
[The DPIdebug() function” on page 53|

[The DPIdisconnect_from_agent() function” on page 78|
[The DPI_PACKET _LEN() macro” on page 54

[The DPIsend_packet_to_agent() function” on page 80|
[The fDPIparse() function” on page 55|

[The fDPIset() function” on page 56|

[The mkDPIAreYouThere() function” on page 57

[The mkDPIclose() function” on page 58|

[The mkDPlopen() function” on page 59

[The mkDPIregister() function” on page 61|

[The mkDPIresponse() function” on page 63|

[The mkDPIset() function” on page 65|

[The mkDPltrap() function” on page 67|

[The mkDPlunregister() function” on page 69|

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0

99

« [The pDPlpacket() function” on page 70|

« [The snmp_dpi_close_packet structure” on page 84
« [The snmp_dpi_get_packet structure” on page 85

+ [The snmp_dpi_next_packet structure” on page 8§
+ [The snmp_dpi_hdr structure” on page 86|

* [“The lookup_host() function” on page 82|

* “The snmp_dpi_resp_packet structure” on page 89|
* [“The snmp_dpi_set_packet structure” on page 90|
+ [“The snmp_dpi_ureg_packet structure” on page 92|
» ["DPI CLOSE reason codes” on page 95|

« |‘DPI packet types” on page 95|

« |'DPI RESPONSE error codes” on page 95|

- |'DPI UNREGISTER reason codes” on page 96

« [“DPI SNMP value types” on page 96|

+ [“Character set selection” on page 94

A DPI subagent example

This is an example of a DPI version 2.0 subagent. The code is called
dpi_mvs_sample.c in the /usr/lpp/tcpip/samples directory.

Note: The example code in this document was copied from the sample file at the
time of the publication. There may be differences in the code presented and
the code that is shipped with the product. Always use the code provided in
the /usr/lpp/tcpip/samples directory as the authoritative sample code.

The DPI subagent example includes:

+ [‘Overview of subagent processing” on page 100
» |“Connecting to the agent” on page 10
+ [‘Registering a subtree with the agent” on page 105
« [‘Processing requests from the agent” on page 106
* |‘Processing a GET request” on page 109
« [‘Processing a GETNEXT request’ on page 112|

* [‘Processing a SET/COMMIT/UNDO request” on page 116
* [‘Processing an UNREGISTER request”’ on page 119

« [‘Processing a CLOSE request” on page 119

* [‘Generating a TRAP” on page 119

Related information
|“Subagent programming concepts” on page 41|

Overview of subagent processing

This overview assumes that the subagent communicates with the agent over a TCP
connection. Other connection implementations are possible and, in that case, the
processing approach may be a bit different.

In this overview, the agent will be requested to send at most one varBind per DPI
packet, so there will be no need to loop through a list of varBinds. Potentially, you
may gain performance improvements if you allow for multiple varBinds per DPI
packet on GET, GETNEXT, SET requests, but to do so, your code will have to loop

100 z/0OS V1R4.0 CS: IP Programmer’s Reference

through the varBind list and so it becomes more complicated. The DPI subagent
programmer can handle that once you understand the basics of the DPI API.

The following are the supported MIB variable definitions for DPI_SIMPLE:
DPISimple-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, snmpModules, enterprises
FROM SNMPv2-SMI
DisplayString
FROM SNMPv2-TC

ibm OBJECT IDENTIFIER ::= { enterprises 2 }
ibmDPI ~ OBJECT IDENTIFIER ::= { ibm 2 }
dpi20MIB OBJECT IDENTIFIER ::= { ibmDPI 1 }

-- dpiSimpleMIB MODULE-IDENTITY

-- LAST-UPDATED "9401310000Z"

-- ORGANIZATION "IBM Research - T.J. Watson Research Center"
-- CONTACT-INFO " Bert Wijnen

-- Postal: IBM International Operations

-- Watsonweg 2

-- 1423 ND Uithoorn

-- The Netherlands

-- Tel: +31 2975 53316
-- Fax: +31 2975 62468
-- E-mail: wijnen@vnet.ibm.com

-- (IBM internal: wijnen at nlvml)"
-- DESCRIPTION

-- "The MIB module describing DPI Simple Objects for
-- the dpi_samp.c program"

-- ::= { snmpModules x }

dpiSimpl1eMIB OBJECT IDENTIFIER ::= { dpi20MIB 5 }

dpiSimplelnteger OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A sample integer32 value"
::= { dpiSimpleMIB 1 }

dpiSimpleString OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A sample Display String"
::= { dpiSimpleMIB 2 }

dpiSimpTeCounter32 OBJECT-TYPE
SYNTAX Counter -- Counter32 is SNMPv2
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A sample 32-bit counter"
::= { dpiSimpleMIB 3 }

dpiSimpTeCounter64 OBJECT-TYPE
SYNTAX Counter -- Counter64 is SNMPv2,
-- No SMI support for it yet
ACCESS read-only
STATUS mandatory

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0

101

DESCRIPTION
"A sample 64-bit counter"
::= { dpiSimpleMIB 4 }
END

To make the code more readable, the following names have been defined in our
dpi_mvs_sample.c source file.

#define DPI_SIMPLE_SUBAGENT ~ "1.3.6.1.4.1.2.2.1.5"
#define DPI_SIMPLE_MIB "1.3.6.1.4.1.2.2.1.5."
#define DPI_SIMPLE_INTEGER "1.0" /* dpiSimplelnteger.0 */
#define DPI_SIMPLE_STRING "2.0" /* dpiSimpleString.0 */
#define DPI_SIMPLE_COUNTER32 "3.0" /* dpiSimpleCounter32.0 */
#define DPI_SIMPLE_COUNTER64 "4.0" /% dpiSimpleCounter64.0 */

In addition, the following variables have been defined as global variables in our
dpi_mvs_sample.c source file.

static int /*handle has global scope =*/
int global_role=0; /+flag for debug macros =*/
static int instance_level = 0;

static Tong int valuel = b;

#define value2_p cur_val_p /* writable object */
#define value2_Ten cur_val_len /* writable object */
static char xcur_val_p = (char *)0;

static char *new val p = (char *)0;

static char *0ld_val_p = (char *)0;

static unsigned Tong cur_val_len = 0;

static unsigned Tong new_val_len = 0;

static unsigned Tong old_val_len = 0;

static unsigned long value3 = 1;

#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT

static snmp_dpi_u64 value4 = {0x80000000,1L};

#endif/*ndef EXCLUDE_SNMP_SMIv2_SUPPORT*/
static int unix_sock =0; /*default use TCP =/
static unsigned short timeout = 3; /*default timeout =*/

Connecting to the agent

Before a subagent can receive or send any DPI packets from or to the SNMP
DPI-capable agent, it must connect to the agent and identify itself to the agent.

The following example code returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. Proper
checking is done for lexicographic next object, but no checking is done for
ULONG_MAX, or making sure that the instance ID is indeed valid (digits and
periods). If the code gets to the end of our dpiSimpleMIB, an endOfMibView must
be returned as defined by the SNMP Version 2 rules. You will need to specify:

* A host name or IP address in dotted decimal notation that specifies where the
agent is running. Often the name loopback can be used if the subagent runs on
the same system as the agent.

* A community name that is used to obtain the dpi TCP port from the agent.
Internally that is done by sending a regular SNMP GET request to the agent. In
an open environment, the well-known community name public can probably be
used.

The function returns a negative error code if an error occurs. If the connection setup
is successful, it returns a handle that represents the connection and that must be
used on subsequent calls to send or await DPI packets.

102 2/0S V1R4.0 CS: IP Programmer’s Reference

The second step is to identify the subagent to the agent. This is done by making a
DPI-OPEN packet, sending it to the agent, and then awaiting the response from the
agent. The agent may accept or deny the OPEN request. Making a DPI-OPEN
packet is done by calling mkDPlopen(), which expects the following parameters:

» A unique subagent identification (an object identifier).
* A description, which can be the NULL string ("").

» Overall subagent timeout in seconds. The agent uses this value as a timeout
value for a response when it sends a request to the subagent. The agent may
have a maximum value for this timeout that will be used if you exceed it.

* The maximum number of varBinds per DPI packet that the subagent is willing or
is able to handle.

* The desired character set. In most cases you want to use the native character
set.

* Length of a password. A 0 means no password.

» Pointer to the password or NULL if no password. It depends on the agent if
subagents must specify a password to open up a connection.

The function returns a pointer to a static buffer holding the DPI packet if successful.
If it fails, it returns a NULL pointer.

When the DPI-OPEN packet has been created, you must send it to the agent. You
can use the DPIsend_packet_to_agent() function, which expects the following
parameters:

* The handle of a connection from DPIconnect_to_agent_TCP.
» A pointer to the DPI packet from mkDPlopen.

* The length of the packet. The snmp_dpi.h include file provides a macro
DPI_PACKET_LEN that calculates the packet length of a DPI packet.

This function returns DPI_RC_OK (value 0) if successful. Otherwise, an appropriate
DPI_RC_xxxx error code as defined in snmp_dpi.h is returned.

Now wait for a response to the DPI-OPEN. To await such a response, you call the
DPlawait_packet_from_agent() function, which expects the following parameters:

* The handle of a connection from DPlconnect_to_agent_TCP.
* Atimeout in seconds, which is the maximum time to wait for response.

» A pointer to a pointer, which will receive a pointer to a static buffer containing the
awaited DPI packet. If the system fails to receive a packet, a NULL pointer is
stored.

* A pointer to a long integer (32-bit), which will receive the length of the awaited
packet. If it fails, it will be set to 0.

This function returns DPI_RC_OK (value 0) if successful. Otherwise, an appropriate
DPI_RC_xxxx error code as defined in snmp_dpi.h is returned.

The last step is to ensure that you received a DPI-RESPONSE back from the
agent. If so, ensure that the agent accepted you as a valid subagent. This will be
shown by the error_code field in the DPI response packet.

The following example code establishes a connection and opens it by identifying
you to the agent.

static void do_connect_and_open(char *hostname_p, char *community p)

{

unsigned char *packet_p;

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 103

104

int rc;
unsigned Tong Tength;
snmp_dpi_hdr *hdr_p;

#ifdef MVS
__etoa(community p); /*
#endif /x MVS */

#ifndef DPI_MINIMAL_SUBAGENT
#ifdef INCLUDE_UNIX DOMAIN_FOR DPI
if (unix_sock) {
handle =
DPIconnect_to_agent UNIXstream(
hostname_p,
community p);
} else
#endif / def INCLUDE_UNIX_DOMAIN_FOR DPI */
#endif /* ndef DPI_MINIMAL_SUBAGENT */

handle =
DPIconnect_to_agent TCP(/=
hostname_p, /%
community p); /*
if (handle < 0) exit(1l); /*
packet p = mkDPIopen(/%
DPI_SIMPLE SUBAGENT, /=
"Simple DPI subAgent", /*
1oL, /*
1L, /*
DPI_NATIVE CSET, /*
oL, /*
(unsigned char *)0); /*
if (!packet_p) exit(1l); /*
rc = DPIsend_packet_to_agent(/*
handle, /*
packet_p, /*

DPI_PACKET_LEN(packet_p));/*
if (rc != DPI_RC_OK) exit(1); /*

rc = DPIawait_packet_from_agent(/=

handle, /*

10, /*
packet_p,

length;); /*

if (rc !'= DPI_RC_OK) exit(1); /%

hdr_p = pDPIpacket(packet p); /*

if (hdr_p == snmp_dpi_hdr_NULL_p) /=

exit(1); /*

Translate to ASCII

/* (UNIX) connect to
/* agent on this host
/* snmp community name

(TCP) connect to agent
on this host
snmp community name

If it failed, exit

Make DPI-OPEN packet
Qur identification
description

Our overall timeout
max varBinds/packet
native character set
password Tength

ptr to password

If it failed, exit

send OPEN packet

on this connection
this is the packet

and this is its length

If it failed, exit
wait for response

on this connection
timeout in seconds

/* receives ptr to packet

receives packet length
If it failed, exit
parse DPI packet

If we fail to parse it
then exit

if (hdr_p->packet_type != SNMP_DPI RESPONSE) exit(1);

rc = hdr_p->data_u.resp_p->error_code;

if (rc != SNMP_ERROR_DPI noError) exit(1);

} /* end of do_connect_and_open() */

z/OS V1R4.0 CS: IP Programmer’s Reference

*/
*/
*/

*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/

*/
*/

*/

*/
*/
*/

*/
*/

Registering a subtree with the agent

After setting up a connection to the agent and identifying yourself, register one or
more MIB subtrees or instances for which you want to be responsible to handle
SNMP requests.

To do so, the subagent must create a DPI-REGISTER packet and send it to the
agent. The agent will then send a response to indicate success or failure of the
register request.

To create a DPI-REGISTER packet, the subagent uses a call to the mkDPlIregister()
function, which expects these parameters:

» Atimeout value in seconds for this subtree. If you specify 0, your overall timeout
value that was specified in DPI-OPEN is used. You can specify a different value
if you expect longer processing time for a specific subtree.

* A requested priority. Multiple subagents may register the same subtree at
different priorities. For example, 0 is better than 1 and so on. The agent
considers the subagent with the best priority to be the active subagent for the
subtree. If you specify -1, you are asking for the best priority available. If you
specify 0, you are asking for a better priority than any existing subagent may
already have.

* The MIB subtree or instance that you want to control. For object level
registration, this group ID must have a trailing dot. For instance level registration,
this group ID would simply have the instance number follow the object number
subtree.

* You have no choice in GETBULK processing. You must ask the agent to map a
GETBULK into multiple GETNEXT packets.

The function returns a pointer to a static buffer holding the DPI packet if successful.
If it fails, it returns a NULL pointer.

Now send this DPI-REGISTER packet to the agent with the
DPIsend_packet_to_agent() function. This is similar to sending the DPI_OPEN
packet. Then wait for a response from the agent. Again, use the
DPlawait_packet_from_agent() function in the same way as you awaited a response
on the DPI-OPEN request. Once you have received the response, check the return
code to ensure that registration was successful.

The following code example demonstrates how to register one MIB subtree with the
agent.

static void do_register(void)
{
unsigned char *packet p;
int rc;
unsigned long Tength;
snmp_dpi_hdr =*hdr_p;
int is
char buf 512 ;

for (i=0; i<4; i++) {

strcpy (buf,DPI_SIMPLE_MIB);
if (instance_level) {
switch (i) {
case 0:
strcat(buf,DPI_SIMPLE_INTEGER);
break;
case 1:

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 105

strcat(buf,DPI_SIMPLE_STRING);
break;

case 2:
strcat(buf,DPI_SIMPLE_COUNTER32);
break;

case 3:
strcat (buf,DPI_SIMPLE_COUNTER64);
break;

} /* endswitch */

1

packet_p = mkDPIregister(/* Make DPIregister packet */
timeout, /* timeout in seconds */

0, /* requested priority */

buf, /* ptr to the subtree */

DPI_BULK NO); /* Map GetBulk into GetNext*/

if (!packet p) exit(1); /* If it failed, exit */
rc = DPIsend_packet_to_agent(/* send REGISTER packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET LEN(packet p));/* and this is its Tength =/

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */
rc = DPIawait_packet from_agent(/* wait for response */
handle, /* on this connection */

10, /* timeout in seconds */
&packet_p, /* receives ptr to packet */
&length); /* receives packet length =*/

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */
hdr_p = pDPIpacket(packet p); /* parse DPI packet */
if (hdr_p == snmp_dpi_hdr_NULL_p) /+ If we fail to parse it =*/
exit(1); /* then exit */

if (hdr_p->packet_type != SNMP_DPI RESPONSE) exit(1);

rc = hdr_p->data_u.resp_p->error_code;
if (rc != SNMP_ERROR_DPI_noError) exit(1);

if (!instance_level) break;
} /* endfor */

} /* end of do_register() */

Processing requests from the agent

After registering your sample MIB subtree with the agent, expect that SNMP
requests for that subtree will be passed back to you for processing. Since the
requests will arrive in the form of DPI packets on the connection that you have
established, go into a While loop to await DPI packets from the agent.

Because the subagent cannot know in advance which kind of packet arrives from
the agent, await a DPI packet (forever), then parse the packet, check the packet
type, and process the request based on the DPI packet type. A call to pDPIpacket,
which expects as parameter a pointer to the encoded or serialized DPI packet,
returns a pointer to a DPI parse tree. The pointer points to an snmp_dpi_hdr
structure which looks as follows:

struct snmp_dpi_hdr {

unsigned char proto_major;
unsigned char proto_version;

106 z/0OS V1R4.0 CS: IP Programmer's Reference

unsigned char proto_release;
unsigned short packet_id;
unsigned char packet type;

union {
snmp_dpi_reg_packet *reg_p;
snmp_dpi_ureg_packet *ureg_p;
snmp_dpi_get_packet *get_p;
snmp_dpi_next_packet *next_p;
snmp_dpi_next_packet *bulk_p;
snmp_dpi_set_packet *set p;
snmp_dpi_resp_packet *xresp_p;
snmp_dpi_trap_packet *trap_p;
snmp_dpi_open_packet *open_p;

snmp_dpi_close_packet *close_p;
unsigned char

} data_u;

}s

*any_ps;

typedef struct snmp_dpi_hdr snmp_dpi_hdr;
#define snmp_dpi_hdr_NULL_p ((snmp_dpi_hdr *)0)

With the DPI parse tree, you decide how to process the DPI packet. The following
code example demonstrates the high level process of a DPI subagent.

main(int argc, char *argv[], char xenvp] [{}[][])

{
unsigned char *packet p;
int i = 0;
int rc = 0;
#ifndef DPI_VERY_MINIMAL_SUBAGENT /* with VERY minimal agent */
int debug = 0;
#endif /* ndef DPI_VERY MINIMAL SUBAGENT =/
unsigned Tong Tlength;
snmp_dpi_hdr xhdr_p;
char *hostname_p = NULL; /* @L1C*/
char *community_p = SNMP_COMMUNITY;
char *cmd_p = "y
char hostname [MAX_HOSTNAME_LEN+1]; /* GL1Ax/

if (argc >= 1) cmd_p = argv[0];

for (i=1; i < argc; i++) {
if (strcmp(argv[i],"-h") == 0) {

} else if (strcmp(argv[i],"-d")

if (i+1

>= argc) {

printf("Need hostname\n\n");
usage(cmd_p);
} /* endif =/
hostname_p = argv[++i];
#ifndef DPI_VERY_MINIMAL_SUBAGENT /* with VERY minimal agent */
} else if (strcmp(argv[i],"-c") == 0) {
if (i+1 >= argc) {
printf("Need community name\n\n");
usage(cmd_p);
} /* endif =/
community p = argv[++i];
#ifdef INCLUDE_UNIX_DOMAIN_FOR_DPI
} else if (strcmp(argv[i],"-unix") == 0) {
unix_sock = 1;
#endif /+ def INCLUDE_UNIX_DOMAIN_FOR DPI */
} else if (strcmp(argv[i],"-ireg") == 0) {
instance_level = 1;

=0) {

if (i+l1 >= argc) {
debug = 1;
continue;

1
if ((strlen(argv[i+1]) == 1) && isdigit(xargv[i+1])) {

itt;

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0

107

108

debug = atoi(argv[il);
} else {
debug = 1;

} /% endif x/
#endif /+ ndef DPI_VERY MINIMAL SUBAGENT */
} else {
usage(cmd_p);
} /* endif =/
} /* endfor */

#ifndef DPI_VERY_MINIMAL_SUBAGENT
if (debug) {
printf("\n%s - %s\n", FILE , VERSION);
DPIdebug(debug); /* turn on DPI dubugging
timeout += 6; /* longer timeout please
} /% endif %/
#endif /* ndef DPI_VERY_MINIMAL SUBAGENT =/

*/
*/

if (hostname_p == NULL) { /* -h not specified. Try to

obtain local host name

BL1A*/

if (gethostname(hostname, MAX HOSTNAME LEN) != 0) {
printf("\ngethostname failed. "

"Restart with -h parameter.\n\n"); /* GL1A*/
exit(1l); /* OL1A*/

}

else { /* gethostname worked @LI1Ax/
hostname_p = hostname; /* OL1Ax/

} /% GL1A*/

} /* -h not specified @LIA%/

/* first init value2_p, our dpiSimpleString (DisplayString)
/* since we treat it as display string keep terminating NULL
value2_p = (char *) malloc(strlen("Initial String")+1);

if (value2_p) {

*/
*/

memcpy (value2_p,"Initial String",strlen("Initial String")+1);

value2_len = strlen("Initial String")+1;
} /% endif =/

do_connect_and_open(hostname_p,
community p); /* connect and DPI-OPEN

do_register(); /* register our subtree

do_trap(); /* issue a trap as sample

while (rc == 0) { /* do forever

rc = DPIawait_packet_from_ agent(/* wait for a DPI packet

handle, /* on this connection
-1, /* wait forever
&packet_p, /* receives ptr to packet
&length); /* receives packet length

if (rc != DPI_RC_OK) exit(1l); [+ If it failed, exit

hdr_p = pDPIpacket(packet p); /* parse DPI packet
if (hdr_p == snmp_dpi_hdr_NULL p)/+ If we fail to parse it
exit(1); /* then exit

switch(hdr_p->packet_type) { /* handle by DPI type
case SNMP_DPI_GET:
rc = do_get(hdr_p,
hdr_p->data_u.get_p);
break;
case SNMP_DPI_GETNEXT:
rc = do_next(hdr_p,
hdr_p->data_u.next_p);

z/OS V1R4.0 CS: IP Programmer’s Reference

break;

case SNMP_DPI_SET:

case SNMP_DPI_COMMIT:

case SNMP_DPI_UNDO:
rc = do_set(hdr_p,

hdr_p->data_u.set_p);

break;

case SNMP_DPI_CLOSE:
rc = do_close(hdr_p,

hdr_p->data_u.close p);

break;

case SNMP_DPI_UNREGISTER:
rc = do_unreg(hdr_p,

hdr_p->data_u.ureg p);

break;

default:
printf("Unexpected DPI packet type %d\n",

hdr_p->packet_type);

rc = -1;

} /* endswitch */

if (rc) exit(1);

} /* endwhile =/

return(0);
} /* end of main() =/

Processing a GET request

When the DPI packet is parsed, the snmp_dpi_hdr structure will show in the
packet_type that this is an SNMP_DPI_GET packet. In that case, the packet_body
contains a pointer to a GET-varBind, which is represented in an
snmp_dpi_get_packet structure:

struct dpi_get_packet {

char xobject_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char xinstance_p; /* ptr to rest of 0ID */
struct dpi_get_packet =next_p; /* ptr to next in chain */
}s
typedef struct dpi_get_packet snmp_dpi_get_packet;

#define snmp_dpi_get_packet NULL_p ((snmp_dpi_get_packet *)0)

Assuming you have registered subtree 1.3.6.1.4.1.2.2.1.5 and a GET request
comes in for one variable (1.3.6.1.4.1.2.2.1.5.1.0) that is object 1 instance 0 in the
subtree, the fields in the snmp_dpi_get_packet would have pointers to:

object p -> "1.3.6.1.4.1.2.2.1.5.1.0"

group_p -> "1.3.6.1.4.1.2.2.1.5."

instance_p -> "1.0"

next_p -> snmp_dpi_get_packet_NULL p

If there are multiple varBinds in a GET request, each one is represented in an
snmp_dpi_get_packet structure and all the snmp_dpi_get_packet structures are
chained using the next pointer. As long as the next pointer is not the
snmp_dpi_get_packet_NULL_p pointer, there are more varBinds in the list.

Now you can analyze the varBind structure for whatever checking you want to do.
When you are ready to make a response that contains the value of the variable,
you prepare a SET-varBind, which is represented in an snmp_dpi_set_packet

structure:

struct dpi_set packet {
char xobject_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of 0ID */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 109

unsigned char value_type; /* SNMP_TYPE_xxxx */

unsigned short value_len; /* value length x/
char xvalue p; /* ptr to value itself =/
struct dpi_set_packet =next_p; /* ptr to next in chain */
}s
typedef struct dpi_set_packet snmp_dpi_set_packet;

#define snmp_dpi_set_packet NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:

* A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or the only varBind in
the chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

* A pointer to the subtree that you registered.

» A pointer to the rest of the OID; in other words, the piece that follows the
subtree.

* The value type of the value to be bound to the variable name. This must be one
of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

* The length of the value. For integer type values, this must be a length of 4. Work
with 32-bit signed or unsigned integers except for the Counter64 type. For the
Counter64 type, point to an snmp_dpi_u64 structure and pass the length of that
structure.

* A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. So
upon return you can dispose of our own pointers and allocated memory as you
please. If the call is successful, a pointer is returned as follows:

* To a new snmp_dpi_set_packet if it is the first or only varBind.

» To the existing snmp_dpi_set_packet that you passed on the call. In this case,
the new packet has been chained to the end of the varBind list.

If the mkDPlset() call fails, a NULL pointer is returned.

When you have prepared the SET-varBind data, you can create a DPI RESPONSE
packet using the mkDPIresponse() function that expects these parameters:

* A pointer to an snmp_dpi_hdr. You should use the header of the parsed incoming
packet. It is used to copy the packet_id from the request into the response, such
that the agent can correlate the response to a request.

* A return code which is an SNMP error code. If successful, this should be
SNMP_ERROR_noError (value 0). If failure, it must be one of the
SNMP_ERROR_xxxx values as defined in the snmp_dpi.h include file.

A request for a nonexisting object or instance is not considered an error. Instead,
you must pass a value type of SNMP_TYPE_noSuchObiject or
SNMP_TYPE_noSuchlinstance respectively. These two value types have an
implicit value of NULL, so you can pass a 0 length and a NULL pointer for the
value in this case.

* The index of the varBind in error starts counting at 1. Pass 0 if no error occurred,
or pass the proper index of the first varBind for which an error was detected.

* A pointer to a chain of snmp_dpi_set_packets (varBinds) to be returned as
response to the GET request. If an error was detected, an
snmp_dpi_set_packet_NULL_p pointer may be passed.

The following code example returns a response. You assume that there are no
errors in the request, but proper code should do the checking for that. For instance,

110 2/0S V1R4.0 CS: IP Programmer's Reference

you return a noSuchlnstance if the instance is not exactly what you expect and a
noSuchObiject if the object instance_ID is greater than 3. However, there might be
no instance_ID at all and you should check for that, too.

static int do_get(snmp_dpi_hdr *hdr_p, snmp_dpi_get packet *pack p)
{

unsigned char *packet_p;

int rc;

snmp_dpi_set_packet *varBind_p;

char *i_ps

varBind p = /* init the varBind chain =*/
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

if (instance_level) {
if (pack_p->instance p) {
printf("unexpected INSTANCE ptr \n");
return(-1);

i_p = pack_p->group_p + strlen(DPI_SIMPLE_MIB);
} else {
i_p = pack_p->instance_p;
}
if (i_p && (strcmp(i_p,"1.0") == 0)) {
varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of 0ID */
SNMP_TYPE_Integer32, /* value type Integer 32 =/
sizeof(valuel), /* length of value */
valuel); /* ptr to value */
} else if (i_p && (strcmp(i_p,"2.0") == 0)) {
varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of 0ID =/
SNMP_TYPE_DisplayString,/* value type */
value2 len, /* length of value */
value2 p); /* ptr to value */
} else if (i_p && (strcmp(i_p,"3.0") ==0)) {
varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain x/
pack_p->group_p, /* ptr to subtree */
pack _p->instance p, /* ptr to rest of 0ID =/
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */

#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT
} else if (i_p && (strcmp(i_p,"4.0") == 0)) {

varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of 0ID =/
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
valued); /* ptr to value *Apr23=/

} else if (i_p && (strcmp(i_p,"4") > 0)) {
#else

} else if (i_p && (strcmp(i_p,"3") > 0)) {
#endif /+ ndef EXCLUDE_SNMP_SMIv2_SUPPORT */

varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain x/
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of 0ID =/
SNMP_TYPE_noSuchObject, /* value type */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 111

oL, /* length of value */

(unsigned char *)0); /* ptr to value x/
} else {
varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of 0ID =/
SNMP_TYPE_noSuchInstance,/* value type */
oL, /* length of value */
(unsigned char *)0); /* ptr to value */

} /x endif */

if (!varBind_p) return(-1); /* If it failed, return x/
packet_p = mkDPIresponse(/* Make DPIresponse packet =*/
hdr_p, /* ptr parsed request */

SNMP_ERROR noError, /+ all is OK, no error */

oL, /* index is zero, no error */

varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */
rc = DPIsend_packet_to_agent(/* send RESPONSE packet =/
handle, /* on this connection */

packet p, /* this is the packet */

DPI_PACKET_LEN(packet_p));/* and this is its length =*/

return(rc); /* return retcode x/
} /* end of do_get() */

Processing a GETNEXT request

When a DPI packet is parsed, the snmp_dpi_hdr structure shows in the
packet_type that this is an SNMP_DPI_GETNEXT packet, and so the packet_body
contains a pointer to a GETNEXT-varBind, which is represented in an
snmp_dpi_next_packet structure:
struct dpi_next_packet {

char *object p; /* ptr to 0IDstring */

char *group_p; /* ptr to sub-tree */

char xinstance_p; /* ptr to rest of 0ID =/

struct dpi_next_packet *next p; /* ptr to next in chain*/
i}pedef struct dpi_next_packet snmp_dpi_next_packet;
#define snmp_dpi_next_packet NULL_p ((snmp_dpi_next_packet *)0)

Assuming you have registered subtree dpiSimpleMIB and a GETNEXT arrives for
one variable (dpiSimplelnteger.0) that is object 1 instance 0 in the subtree, the
fields in the snmp_dpi_get_packet structure would have pointers to:

object_p -> "1.3.6.1.4.1.2.2.1.5.1.0"

group_p -> "1,3.6.1.4.1.2.2.1.5."
instance_p -> "1.0"
next_p -> snmp_dpi_next_packet NULL p

If there are multiple varBinds in a GETNEXT request, each one is represented in an
snmp_dpi_next_packet structure and all the snmp_dpi_next_packet structures are
chained by the next pointer. As long as the next pointer is not the
snmp_dpi_next_packet_NULL_p pointer, there are more varBinds in the list.

Now you can analyze the varBind structure for whatever checking you want to do.
You must find out which OID is the one that lexicographically follows the one in the
request. It is that OID with its value that you must return as a response. Therefore,
you must now also set the proper OID in the response. When you are ready to

112 2/0S V1R4.0 CS: IP Programmer’s Reference

make a response that contains the new OID and the value of that variable, you
must prepare a SET-varBind which is represented in an snmp_dpi_set_packet:

struct dpi_set packet {

char xobject_p; /* ptr to 0IDstring */
char *group_p; /* ptr to sub-tree */
char xinstance_p; /* ptr to rest of 0ID =*/
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value _len; /* value length */
char *value p; /* ptr to value itself x/
struct dpi_set_packet =*next_p; /* ptr to next in chain */

}s

typedef struct dpi_set_packet snmp_dpi_set_packet;

#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPlset() function to prepare such a structure. This function

expects the following parameters:

» A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or only varBind in the
chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

* A pointer to the desired subtree.
* A pointer to the rest of the OID, in other words the piece that follows the subtree.

» The value type of the value to be bound to the variable name. This must be one
of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

» The length of the value. For integer type values, this must be a length of 4. Work
with 32-bit signed or unsigned integers except for the Counter64 type. For
Counter 64 type, point to an snmp_dpi_u64 structure and pass the length of that
structure.

* A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. Upon
return, you can dispose of your own pointers and allocated memory as you please.
If the call is successful, a pointer is returned as follows:

* A new snmp_dpi_set_packet if it is the first or only varBind.

» The existing snmp_dpi_set_packet that you passed on the call. In this case, the
new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

When you have prepared the SET-varBind data, create a DPI RESPONSE packet
using the mkDPIresponse() function, which expects these parameters:

* A pointer to an snmp_dpi_hdr. Use the header of the parsed incoming packet. It
is used to copy the packet_id from the request into the response, such that the
agent can correlate the response to a request.

e A return code that is an SNMP error code. If successful, this should be
SNMP_ERROR_noError (value 0). If failure, it must be one of the
SNMP_ERROR_xxxx values as defined in the snmp_dpi.h include file.

A request for a nonexisting object or instance is not considered an error. Instead,
pass the OID and value of the first OID that lexicographically follows the
nonexisting object or instance.

Reaching the end of the subtree is not considered an error. For example, if there
is no NEXT OID, this is not an error. In this situation, return the original OID as
received in the request and a value_type of SNMP_TYPE_endOfMibView. This
value_type has an implicit value of NULL, so you can pass a 0 length and a
NULL pointer for the value.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 113

* The index of the first varBind in error starts counting at 1. Pass 0 if no error
occurred, or pass the proper index of the first varBind for which an error was
detected.

* A pointer to a chain of snmp_dpi_set_packets (varBinds) to be returned as
response to the GETNEXT request. If an error was detected, an
snmp_dpi_set_packet_NULL_p pointer may be passed.

The following code example returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. Proper
checking is done for lexicographic next object, but no checking is done for
ULONG_MAX, or making sure that the instance ID is indeed valid (digits and
periods). If the code gets to the end of our dpiSimpleMIB, an endOfMibView is
returned as defined by the SNMP Version 2 rules.

static int do_next(snmp_dpi_hdr *hdr_p, snmp_dpi_next packet *pack p)

{
unsigned char *packet_p;
int rcs
unsigned long subid; /* subid is unsigned x/
unsigned long instance; /* same with instance */
char *Cp;

snmp_dpi_set_packet *varBind_p;

varBind_p = /* init the varBind chain =*/
snmp_dpi_set_packet NULL p; /* to a NULL pointer */

/* If we have done instance level registration, then we should */
/* never get a getNext. Anyway, if we do, then we skip this and */
/* return an endOfMibView. */
if (instance_level) {

varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain x/
pack_p->group_p, /* ptr to subtree */
pack_p->instance p, /* ptr to rest of 0ID =*/
SNMP_TYPE_endOfMibView, /* value type */
oL, /* length of value */
(unsigned char *)0); /* ptr to value */

} else {
if (pack_p->instance_p) { /* we have an instance ID =*/
cp = pack_p->instance_p; /* pick up ptr */
subid = strtoul(cp, cp, 10); /* convert subid (object) =*/
if (%cp == '.") { /* followed by a dot ? */
cpt+; /* point after it if yes */

instance=strtoul(cp,cp,10); /* convert real instance */
/* not that we need it, we =/

subid++; /* only have instance 0, */
/* so NEXT is next object =/
instance = 0; /* and always instance 0 =/
} else { /* no real instance passed */
instance = 0; /* so we can use 0 */
if (subid == 0) subid++; /* if object 0, start at 1 %/

} /* endif =/
} else { /* no instance ID passed */
subid = 1; /* so do first object */
instance = 0; /* instance 0 (all we have)=/

} /* endif */

/* we have set subid and instance such that we can basically =/
/* process the request as a GET now. Actually, we don't even =/
/* need instance, because all out object instances are zero. =/

if (instance != 0) printf("Strange instance: %lu\n",instance);

114 2/0S V1R4.0 CS: IP Programmer’s Reference

switch (subid) {

case 1:
varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_INTEGER, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(valuel), /* length of value */
valuel); /* ptr to value */
break;
case 2:
varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_STRING, /* ptr to rest of 0ID x/
SNMP_TYPE_DisplayString,/* value type */
value2 len, /* length of value */
value2_p); /* ptr to value */
break;
case 3:
varBind_p = mkDPIset(/* Make DPI set packet x/
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_COUNTER32, /* ptr to rest of 0ID =/
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */
break;
#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT
case 4: /* *Apr23+*/
varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_COUNTER64, /* ptr to rest of 0ID x/
SNMP_TYPE_Counter64, /* value type */
sizeof(values), /* length of value */
valued); /* ptr to value */
break; /* *Apr23x*/
#endif /* ndef EXCLUDE_SNMP_SMIv2 SUPPORT */
default:
varBind_p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of 0ID =/
SNMP_TYPE_endOfMibView, /* value type */
oL, /* length of value */
(unsigned char *)0); /* ptr to value */
break;

} /* endswitch */

} /% endif =/

if (!varBind_p) return(-1); /* If it failed, return x/
packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
SNMP_ERROR_noError, /* all is 0K, no error */

oL, /* index is zero, no error */

varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */
rc = DPIsend packet to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 115

DPI_PACKET_LEN(packet_p));/* and this is its length =/

return(rc); /* return retcode */
} /* end of do_next() =/

Processing a SET/COMMIT/UNDO request

These three requests can come in one of these sequences:
« SET, COMMIT

« SET, UNDO

» SET, COMMIT, UNDO

The normal sequence is SET and then COMMIT. When a SET request is received,
preparations must be made to accept the new value. For example, check that
request is for an existing object and instance, check the value type and contents to
be valid, and allocate memory, but do not yet make the change.

If there are no SET errors, the next received request will be a COMMIT request. It
is then that the change must be made, but keep enough information such that you
can UNDO the change later if you get a subsequent UNDO request. The latter may
happen if the agent discovers any errors with other subagents while processing
requests that belong to the same original SNMP SET packet. All the varBinds in the
same SNMP request PDU must be processed as if atomic.

When the DPI packet is parsed, the snmp_dpi_hdr structure shows in the
packet_type that this is an SNMP_DPI_SET, SNMP_DPI_COMMIT, or
SNMP_DPI_UNDO packet. In that case, the packet_body contains a pointer to a
SET-varBind, represented in an snmp_dpi_set_packet structure. COMMIT and
UNDO have same varBind data as SET upon which they follow:

struct dpi_set_packet {

char xobject p; /% ptr to 0IDstring */
char *group_p; /* ptr to sub-tree x/
char xinstance_p; /* ptr to rest of 0ID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value Tength */
char xvalue_p; /* ptr to value itself =/
struct dpi_set_packet =*next_p; /* ptr to next in chain =/

1s

typedef struct dpi_set_packet snmp_dpi_set_packet;

#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

Assuming we have a registered subtree dpiSimpleMIB and a SET request comes in
for one variable (dpiSimpleString.0) that is object 1 instance 0 in the subtree, and
also assuming that the agent knows about our compiled dpiSimpleMIB so that it
knows this is a DisplayString (as opposed to just an arbitrary OCTET_STRING), the
pointers in the snmp_dpi_set_packet structure would have pointers and values,

such as:
object_p -> "1.3.6.1.4.1.2.2.1.5.2.0"
group_p -> "1,3.6.1.4.1.2.2.1.5."

instance_p -> "2.0"

value type -> SNMP_TYPE DisplayString
value_len -> 8

value_p -> pointer to the value to be set
next_p -> snmp_dpi_get_packet_NULL p

If there are multiple varBinds in a SET request, each one is represented in an
snmp_dpi_set_packet structure and all the snmp_dpi_set_packet structures are
chained by the next pointer. As long as the next pointer is not the
snmp_dpi_set_packet_NULL_p pointer, there are more varBinds in the list.

116 2/0S V1R4.0 CS: IP Programmer's Reference

Now you can analyze the varBind structure for whatever checking you want to do.
When you are ready to make a response that contains the value of the variable,
you can prepare a new SET-varBind. However, by definition, the response to a
successful SET is exactly the same as the SET request. So there is no need to
return any varBinds. A response with SNMP_ERROR_noError and an index of zero
will do. If there is an error, a response with the SNMP_ERROR_xxxx error code
and an index pointing to the varBind in error (counting starts at 1) will do.

The following code example returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. The code
also does not check if the varBind in the COMMIT or UNDO is the same as that in
the SET request. A proper agent would make sure that that is the case, but a
proper subagent may want to verify that for itself. Only one check is done that this
is dpiSimpleString.0, and if it is not, a noCreation is returned.

static int do_set(snmp_dpi_hdr *hdr_p, snmp_dpi_set_packet *pack_p)
{

unsigned char *xpacket_p;

int rc;

int index = 0;

int error = SNMP_ERROR_noError;

snmp_dpi_set_packet *varBind_p;

char *i_p;

varBind p = /* init the varBind chain =/
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

if (instance_level) {
i_p = pack_p->group_p + strlen(DPI_SIMPLE_MIB);
} else
ip
}

if (Yi_p || (stremp(i_p,"2.0") != 0))
{

([|

pack_p->instance_p;

if (ip &&
(strncmp(i_p,"1.",2) == 0))
{
error = SNMP_ERROR_notWritable;
} else if (i_p &&
(strncmp(i_p,"2.",2) == 0))

error = SNMP_ERROR _noCreation;
} else if (i_p &&
(strncmp(i_p,"3.",2) == 0))

error = SNMP_ERROR notWritable;
} else {

error = SNMP_ERROR_noCreation;
} /% endif =/

packet p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */

error, /* all is 0K, no error */

1, /* index is 1, 1st varBind =/
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return x/
rc = DPIsend packet to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet p, /* this is the packet */

DPI_PAEKET_LEN(packet_p));/* and this is its Tength =/

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 117

return(rc);

}

switch (hdr_p->packet_type) {
case SNMP_DPI_SET:

/*

return retcode */

if ((pack_p->value_type != SNMP_TYPE DisplayString) &&
(pack_p->value_type != SNMP_TYPE_OCTET_STRING))
{ /* check octet string in case agent has no compiled MIB =/

error = SNMP_ERROR_wrongType;
break;

} /% endif =/

if (new_val_p) free(new_val p);

if (old_val_p) free(old_val p);
new_val_p = (char *)0;
old_val p = (char *)0;

new_val_len = 0;
old_val_len = 03

new_val _p =
malloc(pack_p->value Ten);
if (new_val_p) {
memcpy (new_val_p,
pack_p->value_p,
pack_p->value len);

/*

/*
/*

/*
/*
/*
/*
/*
/*

new_val_len = pack_p->value_len;

} else {
error = SNMP_ERROR_genErr;
index = 1;

} /% endif */

break;

case SNMP_DPI_COMMIT:
old_val_p = cur_val_p;
cur_val_p = new_val_p;
new_val_p = (char *)0;
old_val_len = cur_val_len;
cur_val_len = new_val len;
new_val_len = 0;

/*
/*
/*

/*
/*
/*
/*

from switch */

free these memory areas x/

if we allocated any */
allocate memory for */
new value to set */
If success, then also =/

copy new value to our */
own and newly allocated */
memory area. */

Else failed to malloc, =/

so that is a genkErr */
at first varBind */
save old value for undo =/

make new value current =*/
keep only 1 ptr around =*/
and keep lengths correct=/

/* may need to convert from ASCII to native if OCTET_STRING =*/

break;
case SNMP_DPI_UNDO:

if (new_val_p) {
free(new_val p);
new val p = (char *)0;
new_val_len = 0;

} /% endif =/

if (old_val_p) {

/*

if (cur_val_p) free(cur_val p);

cur_val_p = old_val_p;
cur_val_len = old_val_len;
old val p = (char *)0;
old_val_len = 0;
} /% endif =/
break;
} /% endswitch */

packet_p = mkDPIresponse(
hdr_p,
error,
index,
varBind_p);

if (!packet_p) return(-1);
rc = DPIsend packet to_agent(

handle,
packet_p,

118 2/0S V1R4.0 CS: IP Programmer's Reference

/*

/*
/*
/*
/*
/*

/*
/*

/*
/*

free allocated memory */

reset to old value x/

Make DPIresponse packet */

ptr parsed request */
all is 0K, no error */
index is zero, no error */

varBind response data */

If it failed, return */

send RESPONSE packet */
on this connection */
this is the packet */

DPI_PACKET_LEN(packet_p));/* and this is its length =*/

return(rc); /* return retcode */
} /* end of do_set() */

Processing an

UNREGISTER request

An agent can send an UNREGISTER packet if some other subagent does a
register for the same subtree at a higher priority. An agent can also send an
UNREGISTER if, for example, an SNMP manager tells the agent to make the
subagent connection or the registered subtree not valid.

Here is an example of how to handle such a packet.
static int do_unreg(snmp_dpi_hdr *hdr_p, snmp_dpi_ureg_packet *pack p)
{
printf("DPI UNREGISTER received from agent, reason=%d\n",
pack_p->reason_code) ;
printf(" subtree=%s\n",pack_p->group_p);
if (pack_p->reason_code ==
SNMP_UNREGISTER_higherPriorityRegistered)
{
return(0); /* keep waiting, we may regain subtree later */
} /% endif =/
DPIdisconnect_from_agent(handle);

return(-1); /* causes exit in main loop */
} /* end of do_unreg() */

Processing a CLOSE request

An agent can send a CLOSE packet if it encounters an error or for some other
reason. It can also do so if an SNMP MANAGER tells it to make the subagent
connection not valid.

Here is an example of how to handle such a packet.

static int do_close(snmp_dpi_hdr *hdr_p, snmp_dpi_close packet *pack p)
{
printf("DPI CLOSE received from agent, reason=%d\n",
pack_p->reason_code);

DPIdisconnect_from_agent(handle);
return(-1); /* causes exit in main loop */
} /* end of do_close() */

Generating a TRAP

Issue a trap any time after a DPI OPEN was successful. To do so, you must create
a trap packet and send it to the agent. With the TRAP, you can pass different kinds
of varBinds, if you want. In this example, three varBinds are passed; one with
integer data, one with an octet string, and one with a counter. You can also pass an
Enterprise ID, but with DPI 2.0, the agent will use your subagent ID as the
enterprise ID if you do not pass one with the trap. In most cases, that will probably
not cause problems.

You must first prepare a varBind list chain that contains the three variables that you

want to pass along with the trap. To do so, prepare a chain of three
snmp_dpi_set_packet structures, which looks like:

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 119

120

struct dpi_set packet {

char xobject_p; /* ptr to 0IDstring */
char *group_p; /* ptr to sub-tree x/
char xinstance_p; /* ptr to rest of 0ID =*/
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself =/
struct dpi_set _packet *next p; /* ptr to next in chain */

}s

typedef struct dpi_set packet snmp_dpi_set_packet;

#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:

* A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or the only varBind in
the chain, pass the snmp_dpi_set_packet NULL_p pointer to indicate this.

* A pointer to the desired subtree.

* A pointer to the rest of the OID, in other words, the piece that follows the
subtree.

* The value type of the value to be bound to the variable name. This must be one
of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

* The length of the value. For integer type values, this must be a length of 4.
Always work with 32-bit signed or unsigned integers except for the Counter64
type. For the Counter64 type, point to an snmp_dpi_u64 structure and pass the
length of that structure.

* A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. Upon
return, you can dispose of your own pointers and allocated memory as you please.
If the call is successful, a pointer is returned as follows:

* To a new snmp_dpi_set_packet if it is the first or only varBind.

» To the existing snmp_dpi_set_packet that you passed on the call. In this case,
the new packet has been chained to the end of the varBind list.

If the mkDPlset() call fails, a NULL pointer is returned.

When you have prepared the SET-varBind data, create a DPI TRAP packet. To do
so, use the mkDPIltrap() function, which expects these parameters:

* The generic trap code. Use 6 for enterprise specific trap type.

* The specific trap type. This is a type that is defined by the MIB that you are
implementing. In our example you just use a 1.

* A pointer to a chain of varBinds or the NULL pointer if no varBinds need to be
passed with the trap.

* A pointer to the enterprise OID if you want to use a different enterprise ID than
the OID you used to identify yourself as a subagent at DPI-OPEN time.

The following code creates an enterprise-specific trap with specific type 1 and
passes 3 varBinds. The first varBind with object 1, instance 0, Integer32 value; the
second varBind with object 2, instance 0, Octet String; the third with Counter32. You
pass no enterprise ID.

static int do_trap(void)
{

unsigned char *packet_p;
int rcs

z/OS V1R4.0 CS: IP Programmer’s Reference

snmp_dpi_set_packet *varBind_p, *set p;

varBind p = /* init the varBind chain =*/
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */
varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_INTEGER, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 x/
sizeof(valuel), /* length of value */
valuel); /* ptr to value */
if (!varBind_p) return(-1); /* If it failed, return x/
set p = mkDPIset(/* Make DPI set packet x/
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_STRING, /* ptr to rest of 0ID =/
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2 p); /* ptr to value */
if (!set_p) { /* if we failed... then =/
fDPIset(varBind_p); /* free earlier varBinds */
return(-1); /* If it failed, return */

1
set_p = mkDPIset (/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE MIB, /* ptr to subtree */
DPI_SIMPLE_COUNTER32, /* ptr to rest of 0ID =/
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */
if (!set_p) { /* if we failed... then */
fDPIset(varBind p); /* free earlier varBinds =/
return(-1); /* If it failed, return */

1

#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT

/% *Apr23+/
set p = mkDPIset(/* Make DPI set packet =/
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree x/
DPI_SIMPLE_COUNTER64, /* ptr to rest of 0ID x/
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
valued); /* ptr to value */
if (Iset_p) { /* if we failed... then =/
fDPIset(varBind_p); /* free earlier varBinds */
return(-1); /* If it failed, return */

1

#endif /* ndef EXCLUDE_SNMP_SMIv2 SUPPORT =*/

packet_p = mkDPItrap(/* Make DPItrap packet */
6, /* enterpriseSpecific */
1, /* specific type = 1 */
varBind_p, /* varBind data, and use */
(char *)0); /* default enterpriselD */
if (!packet_p) return(-1); /* If it failed, return */
rc = DPIsend_packet_to_agent(/* send TRAP packet */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 121

122

handle, /*
packet_p, /*
DPI_PACKET LEN(packet p));/=*

return(rc); /*
} /* end of do_trap() =/

z/OS V1R4.0 CS: IP Programmer’s Reference

on this connection
this is the packet
and this is its length

return retcode

*/
*/
*/

Chapter 4. Running the sample SNMP DPI client program for
version 2.0

This section explains how to run the sample SNMP DPI client program,
dpi_mvs_sample.c, installed in /usr/lpp/tcpip/samples. It can be run using the SNMP
agents that support the SNMP-DPI interface as described in RFC 1592.

The sample implements a set of variables described by the DPISimple-MIB, a set of
objects in the IBM Research tree (under the 1.3.6.1.4.1.2.2.1.5 object ID prefix).
See ['DPISimple-MIB descriptions” on page 124|for the object ID and type of each
object.

Using the sample program
The dpi_mvs_sample.c program accepts the following arguments:
? Explains the usage
-d n Sets the debug at level n

The range is 0 (for no messages) to 2 (for the most verbose). The default is
1, if you specify -d with no value.

0 No debug messages
1 Packet creation debug messages
2 Packet creation debug messages, and traces of packets sent and
received; the debug output goes to syslogd because the debug
used is dpi.
-h hostname

Specifies the host name or IP address where an SNMP DPI-capable agent
is running; the default is the local host.

-Cc community_name
Specifies the community name for the SNMP agent that is required to get
the dpiPort; the default is public.

-ireg Specifies that the subagent should do instance-level registration of MIB
objects.

-unix Specifies that the subagent should connect to the SNMP agent using a
UNIX stream socket instead of a TCP socket. You must also define
INCLUDE_UNIX_DOMAIN_FOR_DPI when compiling the subagent.

Compiling and linking the dpi_mvs_sample.c source code

The dpi_mvs_sample.c program is located in /usr/Ipp/tcpip/samples.

You can specify the following compile time flags:

INCLUDE_UNIX_DOMAIN_FOR_DPI
Indicates that the sample subagent should be compiled to connect to the
agent using a UNIX Stream socket instead of a TCP connection.

MVS Indicates that compilation is for MVS, and uses MVS-specific includes.
Some MVS/VM-specific code is compiled.

© Copyright IBM Corp. 1989, 2002 123

DPISimple-MIB descriptions

The following shows the MIB descriptions for DPISimple-MIB implemented by the
sample subagent.
dpi_mvs_sample.c supports these variables as an SNMP DPI

sample sub-agent
it also generates enterprise specific traps via DPI with these objects

Name 0ID Type Value
dpiSimplelnteger 1.3.6.1.4.1.2.2.1.5.1.0 integer 5
dpiSimpleString 1.3.6.1.4.1.2.2.1.5.2.0 string "Initial String"
dpiSimpTeCounter32 1.3.6.1.4.1.2.2.1.5.3.0 counter32 1
dpiSimpTeCounter64 1.3.6.1.4.1.2.2.1.5.4.0 counter64

X'8000000000000001 "

Of the above, only dpiSimpleString can be changed with an SNMP SET request.

124 2/0S V1R4.0 CS: IP Programmer’s Reference

Chapter 5. Resource Reservation Setup Protocol API (RAPI)

Introduction

The z/OS UNIX RSVP Agent includes an application programming interface (API)
for the Resource ReSerVation Protocol (RSVP), known as RAPI.

The RAPI interface is one realization of the generic API contained in the RSVP
functional specification (refer to RFC 2205). RSVP describes a resource reservation
setup protocol designed for an integrated services internet. RSVP provides
receiver-initiated setup of resource reservations for multicast or unicast data flows.
Refer to the RSVP applicability statement in reference RFC 2210 for more
information.

The RAPI interface is a set of C language bindings whose calls are defined in this
chapter. Applications use RAPI to request enhanced Quality of Service (QoS). The
RSVP agent then uses the RSVP protocol to propagate the QoS request through
the routers along the paths for the data flow. Each router may accept or deny the
request, depending upon the availability of resources. In the case of failure, the
RSVP agent will return the decision to the requesting application by way of RAPI.

RSVP is a receiver-oriented signaling protocol that enables applications to request
Quality of Service on an IP network. The types of Quality of Service requested by
those applications are defined by Integrated Services. RSVP signaling applies to
simplex unicast or multicast data flows. Although RSVP distinguishes senders from
receivers, the same application may act in both roles.

RSVP assigns QoS to specific IP data flows that can be either
multipoint-to-multipoint or point-to-point data flows, known as sessions. A session is
defined by a particular transport protocol, IP destination address, and destination
port. To receive data packets for a particular multicast session, an application must
join the corresponding IP multicast group.

A data source, or sender, is defined by an IP source address and a source port. A
given session may have multiple senders (S1, S2, ... Sn), and if the destination is a
multicast address, multiple receivers (R1, R2, ... Rn).

Under RSVP, QoS requests are made by the data receivers. A QoS request
contains a flowspec, together with a filter spec. The flowspec includes an Rspec,
which defines the desired QoS and is used to control the packet scheduling
mechanism in the router or host, and also a Tspec, which defines the traffic
expected by the receiver. The filter spec controls packet classification to determine
which sender data packets receive the corresponding QoS.

The detailed manner in which reservations from different receivers are shared in the
internet is controlled by a reservation parameter known as the reservation style.
The RSVP Functional Specification (refer to RFC 2205) contains a definition and
explanation of the different reservation styles. Also refer to the [z703
Communications Server: IP Configuration Guidg and [z70S Communications Server]
P Diagnosig] for more information on the RSVP agent.

© Copyright IBM Corp. 1989, 2002 125

API outline

Using the RAPI interface, an application uses the rapi_session() call to define an
APl session for sending a single simplex data flow or receiving such a data flow.
The rapi_sender() call may then be used to register as a data sender, and the
rapi_reserve() call may be used to make a QoS reservation as a data receiver.

The rapi_sender() or rapi_reserve() calls may be repeated with different parameters
to dynamically modify the state at any time or they can be issued in null forms that
retract the corresponding registration. The application can call rapi_release() to
close the session and delete all of its resource reservations.

A single API session, defined by a single rapi_session() call, can define only one
sender at a time. More than one API session may be established for the same
RSVP session. For example, if an application sends multiple UDP data flows
distinguished by source port, it will call rapi_session() and rapi_sender() separately
for each of these flows.

The rapi_session() call allows the application to specify an upcall (or callback)
routine that will be invoked to signal RSVP state change and error events. There
are five types of events:

* RAPI_PATH_EVENT signals the arrival or change of path state.

* RAPI_RESV_EVENT signals the arrival or change of reservation state.
* RAPI_PATH_ERROR signals the corresponding path error.

* RAPI_RESV_CONFIRM signals the arrival of a CONFIRM message.

* RAPI_RESV_ERROR signals the corresponding reservation error.

A synchronous error in a RAPI routine returns an appropriate error code.
Asynchronous RSVP errors are delivered to the application by way of the RAPI
upcall routine.

Compiling and linking RAPI applications

To use the RAPI interface, an application must perform the following steps:
1. Include the <rapi.h> header file, which is available in the /usr/include directory.

2. Compile the application with the DLL compiler option. Refer to the |z70S C/C+
for more information on how to specify compiler options.

3. Include the RAPI definition side deck (rapi.x), which is available in the /usr/lib
directory, when prelinking or binding the application.

4. If the Binder is used instead of the C Prelinker, specify the Binder DYNAM=DLL
option. Refer to|zZ0S DFSMS Program Management for information on
specifying Binder options.

Running RAPI applications

At execution time, the RAPI application must have access to the RAPI DLL
(rapi.dll), which is available in the /usr/lib directory. Ensure that the LIBPATH
environment variable includes this directory when running the application. The RAPI
application must run with superuser authority to use RAPI.

126 2z/0S V1R4.0 CS: IP Programmer’s Reference

Event upcall

An upcall is invoked by the asynchronous event mechanism. It executes the
function whose address was specified in the event_rtn parameter in the
rapi_session()call.

The event upcall function template is defined as follows:

rapi_event_rtn_t - Event upcall

#include <rapi.h>

typedef int rapi_event_rtn_t(

rapi_sid_t Sid, /* Session ID */
rapi_eventinfo_t EventType, /* Event type */
rapi_styleid_t Style, /* Reservation style */
int ErrorCode, /* Error event: code */
int ErrorValue, /* Error event: value */
rapi_addr_t *ErrorNode, /* Node detecting error =/
unsigned int ErrorFlags, /* Error flags */
int FilterspecNo, /* number of filterspecs*/
rapi_filter_t *Filterspec_list,
int FlowspecNo, /* number of flowspecs =/
rapi_flowspec_t *Flowspec_list,
int AdspecNo, /* number of adspecs */
rapi_adspec_t *Adspec_list,
void *Event_arg /* application argument */
)s
Description

This is the template for the function address supplied on the rapi_session call. The
event upcall function is invoked from the asynchronous event mechanism when an
event occurs.

Parameters

Sid This parameter is the session ID for the session initiated by a successful
rapi_session() call.

EventType
This parameter contains the upcall event type. See the description of this
parameter under [‘Result’ on page 128}

Style This parameter contains the style of the reservation; it is nonzero only for a
RAPI_RESV_EVENT or RAPI_RESV_ERROR event.

ErrorCode, ErrorValue
These values encode the error cause, and they are set only for a
RAPI_PATH_ERROR or RAPI_RESV_ERROR event. See |“Error handling”|

on page 141| for interpretation of these values.

ErrorNode
This is the IP address of the node that detected the error, and it is set only
for a RAPI_PATH_ERROR or RAPI_RESV_ERROR event.

ErrorFlags
These error flags are set only for a RAPI_PATH_ERROR or
RAPI_RESV_ERROR event.

RAPI_ERRF_InPlace
The reservation failed, but another (presumably smaller)
reservation is still in place on the same interface.

Chapter 5. Resource Reservation Setup Protocol APl (RAPI) 127

128

RAPI_ERRF_NotGuilty
The reservation failed, but the request from this client was
merged with a larger reservation upstream, so this client
reservation might not have caused the failure.

FilterSpec_list, FilterSpecNo
The FilterSpec_list parameter is a pointer to an area containing a sequential
vector of RAPI filter spec or sender template objects. The number of objects
in this vector is specified in FilterSpecNo. If FilterSpecNo is 0, the
FilterSpec_list parameter will be NULL.

Flowspec_list, FlowspecNo
The Flowspec_list parameter is a pointer to an area containing a sequential
vector of RAPI flowspec or Tspec objects. The number of objects in this
vector is specified in FlowspecNo. If FlowspecNo is 0, the Flowspec_list
parameter will be NULL.

Adspec_list, AdspecNo
The Adspec_list parameter is a pointer to an area containing a sequential
vector of RAPI adspec objects. The number of objects in this vector is
specified in AdspecNo. If AdspecNo is 0, the Adspec_list parameter will be
NULL.

Event _arg
This is the value supplied in the rapi_session() call.

Result

When the application upcall function returns, any areas pointed to by Flowspec_list,
FilterSpec_list, or Adspec_list become not valid for further reference. The upcall
function must copy any values it wants to save.

The specific parameters depend upon EventType, which may have one of the
following values:

RAPI_PATH_EVENT
A path event indicates that RSVP sender (Path) state from a remote node
has arrived or changed at the local node. A RAPI_PATH_EVENT event
containing the complete current list of senders (or possibly no senders, after
a path teardown) in the path state for the specified session will be triggered
whenever the path state changes.

FilterSpec_list, Flowspec_list, and Adspec_list will be of equal length, and
corresponding entries will contain sender templates, sender Tspecs, and
Adspecs, respectively, for all senders known at this node. A missing object
will generally be indicated by an empty RAPI object.

RAPI_PATH_EVENT events are enabled by the initial rapi_session() call.

RAPI_RESV_EVENT
A reservation event indicates that reservation state has arrived or changed
at the node, implying (but not assuring) that reservations have been
established or deleted along the entire data path to one or more receivers.
RAPI_RESV_EVENT upcalls containing the current reservation state for the
API session will be triggered whenever the reservation state changes.

Flowspec_list will either contain one flowspec object or be empty (if the
state has been torn down), and FilterSpec_list will contain zero or more
corresponding filter spec objects. Adspec_list will be empty.

z/OS V1R4.0 CS: IP Programmer’s Reference

RAPI_RESV_EVENT upcalls are enabled by a rapi_sender() call; the
sender template from the latter call will match the filter spec returned in the
upcall triggered by a reservation event.

RAPI_PATH_ERROR

A path error event indicates that an asynchronous error has been found in
the sender information specified in a rapi_sender() call.

The ErrorCode and ErrorValue parameters will specify the error.
FilterSpec_list and Flowspec._list will each contain one object, the sender
template and corresponding sender Tspec (if any) in error, while Adspec_list
will be empty. If there is no sender Tspec, the object in Flowspec_list will be
an empty RAPI object. The Adspec_list will be empty.

RAPI_PATH_ERROR events are enabled by a rapi_sender() call, and the
sender Tspec in that call will match the sender Tspec returned in a
subsequent upcall triggered by a RAPI_PATH_ERROR event.

RAPI_RESV_ERROR

A reservation error upcall indicates that an asynchronous reservation error
has occurred.

The ErrorCode and ErrorValue parameters will specify the error.
Flowspec_list will contain one flowspec, while FilterSpec_list may contain
zero or more corresponding filter specs. Adspec_list will be empty.

RAPI_RESV_ERROR events are enabled by a rapi_reserve() call.

RAPI_RESV_CONFIRM

A RAPI_RESV_CONFIRM event indicates that a reservation has been
made at least up to an intermediate merge point, and probably (but not
necessarily) all the way to at least one sender.

The parameters of a RAPI_RESV_CONFIRM event are the same as those
for a RAPI_RESV_EVENT event upcall.

The accompanying table summarizes the upcalls. n is a nonnegative integer.

Upcall Enabled by FilterSpecNo |FlowspecNo |AdspecNo
RAPI_PATH_EVENT rapi_session n n n
RAPI_PATH_ERROR rapi_sender 1 1 0
RAPI_RESV_EVENT rapi_sender n 1or0 0
RAPI_RESV_ERROR rapi_reserve n 1 0
RAPI_RESV_CONFIRM rapi_reserve 1 1 0

Client library services

The RSVP API provides the following client library calls:

* rapi_release()
* rapi_reserve()
* rapi_sender()
* rapi_session()
* rapi_version()

To use these calls, the application must include the file <rapi.h>. See |"Header files”
for more information on header files.

Chapter 5. Resource Reservation Setup Protocol API (RAPI)

129

rapi_release - Remove a session

#include <rapi.h>

int rapi_release (rapi_sid_t Sid)

Description

The rapi_release() call removes the reservation, if any, and the state corresponding
to a given session handle. This call will be made implicitly if the application
terminates without closing its RSVP sessions.

Parameters

Sid This parameter is the session ID for the session initiated by a successful
rapi_session() call.

Result
If the session handle is not valid, the call returns a corresponding RAPI error code;
otherwise, it returns 0.

rapi_reserve - Make, modify, or delete a reservation

130

#include <rapi.h>

int rapi_reserve(

rapi_sid_t Sid, /% Session ID */
int Flags, /* Flags */
rapi_addr_t *RHost, /* Receive host addr */
rapi_styleid_t Styleld, /* Style ID */
rapi_stylex_t *Style Ext, /% Style extension */
rapi_policy_t *Rcvr_Policy, /* Receiver policy */
int FilterSpecNo, /* Number of filter specs */
rapi_filter_t *FilterSpec_list, /* List of filter specs */
int FlowspecNo, /* Number of flowspecs */
rapi_flowspec_t *Flowspec_list /* List of flowspecs */

)

Description

The rapi_reserve() function is called to make, modify, or delete a resource
reservation for a session. The call may be repeated with different parameters,
allowing the application to modify or remove the reservation; the latest call will take
precedence.

Parameters

Sid This parameter is the session ID for the session initiated by a
successful rapi_session() call.

Flags No flags are currently defined for this call.

RHost This parameter is used to define the interface address on which

data will be received for multicast flows. It is useful for a
multihomed host. If it is NULL or the host address is INADDR_ANY,
the default interface will be chosen.

Styleld This parameter specifies the reservation style ID (see
Flowspec_list, FlowspecNo).

Style_Ext This parameter must be NULL.
Rcevr_Policy This parameter must be NULL.

z/OS V1R4.0 CS: IP Programmer’s Reference

FilterSpec_list, FilterSpecNo
The FilterSpec_list parameter is a pointer to an area containing a
sequential vector of RAPI filter spec objects. The number of objects
in this vector is specified in FilterSpecNo. If FilterSpecNo is 0, the
FilterSpec_list parameter is ignored and can be NULL.

Flowspec_list, FlowspecNo
The Flowspec_list parameter is a pointer to an area containing a
sequential vector of RAPI flow spec objects. The number of objects
in this vector is specified in FlowspecNo. If FlowspecNo is 0, the
Flowspec_list parameter is ignored and can be NULL.

If FlowspecNo is 0, the call will remove the current reservations for
the specified session, and FilterSpec_list and Flowspec._list will be
ignored. Otherwise, the parameters depend upon the style, as
follows:

Wildcard Filter (WF)
Use Styleld = RAPI_RSTYLE_WILDCARD. The
Flowspec_list parameter may be NULL (to delete
the reservation) or else point to a single flowspec.
The FilterSpec_list parameter should be empty.

Fixed Filter (FF)
Use Styleld = RAPI_RSTYLE_FIXED. FilterSpecNo
must equal FlowspecNo. Entries in Flowspec_list
and FilterSpec_list parameters will correspond in
pairs.

Shared Explicit (SE)
Use Styleld = RAPI_RSTYLE_SE. The
Flowspec_list parameter should point to a single
flowspec. The FilterSpec_list parameter may point
to a list of any length.

Result
Depending upon the parameters, each call may or may not result in new admission
control calls, which could fail asynchronously.

If there is a synchronous error in this call, rapi_reserve() returns a RAPI error code;
otherwise, it returns 0.

Applications measure success in the form of errors returned when making QoS
requests. No final acknowledgment will occur.

An admission control failure (for example, refusal of the QoS request) is reported
asynchronously by an upcall of type RAPI_RESV_ERROR. A RSVP_Err_NO_PATH
error code indicates that RSVP state from one or more of the senders specified in
FilterSpec_list has not (yet) propagated all the way to the receiver; it may also
indicate that one or more of the specified senders has closed its APl session and
that its RSVP state has been deleted from the routers.

rapi_sender - Specify sender parameters

#include <rapi.h>

int rapi_sender(
rapi_sid_t Sid, /* Session ID */
int Flags, /* Flags */

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 131

132

rapi_addr_t *LHost, /* Local Host */
rapi_filter_t =*SenderTemplate, /* Sender template */

rapi_tspec_t *SenderTspec, /* Sender Tspec */
rapi_adspec_t *SenderAdspec, /* Sender Adspec x/
rapi_policy_t *SenderPolicy, /* Sender policy data */
int TTL /* Multicast data TTL */
)
Description

An application must issue a rapi_sender() call if it intends to send a flow of data for
which receivers may make reservations. This call defines, redefines, or deletes the
parameters of that flow. A rapi_sender() call may be issued more than once for the
same API session; the most recent one takes precedence.

Once a successful rapi_sender() call has been made, the application may receive
upcalls of type RAPI_RESV_EVENT or RAPI_PATH_ERROR.

Parameters

Sid This parameter is the session ID for the session initiated by a successful
rapi_session() call.

Flags No flags are currently defined for this call.

LHost This parameter may point to a rapi_addr_t structure specifying the IP
source address and, if applicable, the source port from which data will be
sent, or it may be NULL.

If the IP source address is INADDR_ANY, the API will use the default IP
address of the local host. This is sufficient unless the host is multihomed.
The port number may be zero if the protocol for the session does not have
ports.

A NULL LHost parameter indicates that the application wishes to withdraw
its registration as a sender. In this case, the following parameters will all